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1. Introduction 

Over the last six decades, Sub-Saharan Africa (SSA) has been the world’s fastest urbanizing region. 
Between 1960 and 2021, the share of its population living in officially classified urban areas increased 
almost 15-fold from around 33.3 million to just over 494 million, while the share of its population living 
in such areas climbed from 14.6 to 41.8 percent.1 This rapid urbanization is, moreover, set to continue 
in the decades ahead. By 2050, more than 1.26 billion people will be living in SSA’s towns and cities, 
more than 2.5 times the number today. Such rapid urbanization carries with it important economic, 
social, and environmental implications for the development of a region in which more than one-third of 
the population lived in extreme poverty in 2019.2 
 
Despite its rapidity and importance, however, remarkably little is known about the detailed anatomy of 
patterns of urbanization across SSA countries. This neglect reflects both a lack of detailed official data 
on urban settlements and populations, and, partly also related to this, a relative lack, with some notable 
exceptions, of research interest among urban economists in the region’s urbanization.3 Against this 
backdrop, this paper aims to provide a detailed descriptive analysis, for the year circa 2015, of patterns 
of urbanization across SSA countries. In doing so, the paper distinguishes between two types of urban 
area – cities and towns. To identify these areas, the paper applies a modified version of an algorithm 
first developed by de Bellefon et al. (2021) to high-resolution gridded population data for the region, 
which is itself derived from digitized maps of the footprints of all buildings in the region from very 
high-resolution satellite imagery. This allows for a consistent definition of urban areas across all 
countries in the region, thereby overcoming the measurement problems that arise from relying on 
official definitions of urban areas, which vary widely across both SSA countries and countries globally 
(World Bank 2009, Roberts et al. 2017, Dijkstra et al. 2021).  
 
As part of its analysis of urbanization for SSA, the paper presents evidence on key features of the urban 
landscape, both across and within urban areas. Looking across urban areas, the paper provides evidence 
on, inter alia, aggregate differences in levels of urbanization between countries, numbers of urban areas, 
the share of land they occupy, their population densities, and the structure of urban hierarchies as 
captured by, for example, Zipf’s law, as well as on how these features of urbanization correlate with 
both a country’s size (i.e., population) and level of development.  Meanwhile, looking within cities, it 
provides evidence on key empirical regularities such as population density gradients and the number of 
(sub-)centers.    
 
The paper contributes to three interrelated literatures. First, it contributes to a nascent literature that 
provides new evidence on patterns of urbanization in Africa by leveraging satellite data. This includes 
a recent paper by Henderson, Peng, and Venables (2022) which uses data from the European Union’s 
Global Human Settlements built cover data set, GHS-BUILT, to examine patterns of settlement growth 
across SSA between 1975 and 2014. Henderson et al. identify a rapid growth in the number of 
settlements – from about 47,500 to around 111,500 – with evidence of complementary (competitive) 
patterns of growth for nearby settlements of different (similar) size.4 They also empirically reject 
Gibrat’s law, which underpins Zipf’s law in Gabaix (1999), finding that built-up area growth has been 
fastest for the settlements that were initially smallest in 1975.  

 
1 The statistics on urbanization cited in this paragraph are based on data from the United Nations’ World 
Urbanization Prospects: 2018 Revision (https://population.un.org/wup/). 
2 Extreme poverty is defined based on the global extreme poverty line of $2.15 a day (2017 Purchasing Power 
Parity exchange rates). Data on extreme poverty is from the World Bank’s World Development Indicators 
(https://databank.worldbank.org/source/world-development-indicators). 
3 Until relatively recently, most empirical urban economics research has been focused on the US and other 
developed countries, as well as on a few large developing countries such as Brazil, China, India, and Indonesia. 
Exceptions to the general neglect of SSA countries include several papers by Vernon Henderson and co-authors 
(Henderson and Turner, 2020; Henderson, Regan, and Venables, 2021; Henderson, Nigmatulina, and Kriticos, 
2021). 
4 Henderson et al. do not explicitly distinguish between different types of settlement (i.e., cities versus towns) but 
instead examine settlement growth in general based on a binary classification of built-up versus non-built-up. 
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This nascent literature also includes work by OECD/SWAC (2020), which leverages data on 
populations and built-up area extents for urban agglomerations from the Africapolis database. In this 
database, urban agglomerations are identified as contiguous built-up areas from Google Earth and other 
satellite imagery, with a population of at least 10,000. Although they focus on a much narrower set of 
settlements than Henderson et al.,5 the authors similarly provide evidence of a rapid growth in the 
number of urban agglomerations between 1950 and 2015 (see also Heinrigs 2021; OECD/UN 
ECA/AfDB 2022). They further document the emergence of larger networks of cities, some of which 
straddle national boundaries.  
 
Whereas the above studies focus on describing urbanization dynamics over time, this paper instead 
focuses on providing a detailed empirical description of the anatomy of SSA’s urbanization for a single 
year – circa 2015. A notable advantage of this is that it allows us to make use of much higher quality 
gridded population data. In doing so, we avoid relying on data for built-up areas only, which allows us 
to capture the intensive margin of urbanization relating to population density. In particular, as 
mentioned above, our analysis relies on high-resolution gridded population data that is derived, in part, 
from the digitization of the footprints of all buildings in the region from very high-resolution satellite 
imagery. Specifically, we use constrained WorldPop data from the University of Southampton’s 
WorldPop group for SSA countries as an input into our algorithm for delineating urban areas. Unlike 
the more standard unconstrained WorldPop data, which allocates population more generally across grid 
cells, whether built-up or not, based on many spatial covariates of population, the constrained WorldPop 
algorithm restricts the spatial allocation of population from larger administrative units to only built-up 
grid cells, where built-up area is identified based on building footprints.6 The building footprints, in 
turn, come from the Digitize Africa project, which applied Artificial Intelligence techniques to 50 cm 
resolution satellite imagery for circa 2015 to map all buildings in 51 SSA countries. Because of its 
precision, this built-up area data is far superior to, for example, the corresponding 2015 built-up area 
data from the GHS-BUILT data set on which Henderson et al. (2022) rely. Hence, relative to the 
Digitize Africa data for 2015, GHS-BUILT vastly under-detects built-up area.7  Compared to 
Henderson et al. (2022) and OECD/SWAC (2022), focusing on a single time-period also allows us to 
go deeper into describing patterns of urbanization for that period. This includes providing empirical 
analysis of the internal spatial structures of urban areas, a topic about which little is known empirically, 
especially for SSA. 
 
The second, related, literature to which our paper contributes is that on methods for the more accurate 
and consistent delineation of urban areas across countries. While there is a notable strand of the urban 
economics literature that has long been concerned with the questions of how to rigorously define urban 
and metropolitan areas (see, for example, Berry 1960; Fox and Kumar 1965; Berry et al. 1969; 
Kanemoto and Kurima 2005; Duranton 2015) and how to delineate urban areas across countries in a 
comparable manner (Hall and Hay 1980; Cheshire and Hay 1989), the development and large-scale 
application of algorithms for the more accurate and consistent delineation of urban areas across 
countries was, for a long time, constrained by both data and computing costs. However, with greater 
availability of increasingly high-resolution and low-cost satellite imagery, improvements in remote 
sensing techniques for extracting useful data from satellite images, and declining computational costs 

 
5 OECD/SWAC (2020) identify 7,617 urban agglomerations as of 2015. In addition to SSA, their analysis covers 
North Africa. 
6 For a more detailed description of the differences between WorldPop’s constrained and unconstrained data sets 
see https://www.worldpop.org/methods/top_down_constrained_vs_unconstrained/. In both cases, population is 
allocated to grid cells using machine learning methods described in Stevens et al. (2015). 
7 In the GHS-BUILT data set, the quality of the satellite imagery used to derive built-up area is also likely to be 
lower for earlier years which introduces an additional source of measurement error for any dynamic analysis of 
SSA’s urbanization process. Similar considerations apply to OECD/SWAC’s (2020) dynamic analysis of 
urbanization patterns in Africa based on the Africapolis data set. Hence, while Google Earth provides the 
underlying source of imagery for 2015 for this data set, it is unclear, from the descriptions of the data in 
OECD/SWAC (2020) and Heinrigs (2021), what the underlying sources of imagery are for the earlier years, going 
back to 1950. 

https://www.worldpop.org/methods/top_down_constrained_vs_unconstrained/
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for applying algorithms to those data at regional and global scales, there has been a recent upsurge of 
research interest in urban delineation. This has led to the development and application of several new 
algorithms for the more accurate and consistent delineation of urban areas across countries (see, inter 
alia, Uchida and Nelson 2009; Dijkstra and Poelman 2014; Zhou, Hubacek, and Roberts 2015; Ch, 
Martin, and Vargas 2021; Dijkstra et al. 2021).   
 
One shortcoming that most of these algorithms share, however, is that they rely on one or more, 
essentially arbitrary, thresholds to delineate an urban area. For example, the widely used “degree of 
urbanization” approach (Dijkstra and Poelman 2014; Dijkstra et al. 2021) relies on two such thresholds 
to identify urban settlements – namely, an overall population threshold for the settlement and a 
population density threshold for each 1 km2 population grid cell that belongs to it.8, 9  
 
To overcome this shortcoming, we instead apply a modified version of the de Bellefon et al. (2021) 
“dartboard” algorithm. This algorithm has the advantage that it grounds the identification and 
delineation of urban areas in a statistical approach which avoids the a priori specification of arbitrary, 
and globally uniform, population (density) thresholds. In essence, and after performing smoothing, the 
algorithm identifies urban areas as clusters of statistically significant peaks of population or built-up 
density. This is done by comparing the actual spatial distribution of population or built-up density with 
the counterfactual spatial distributions that would result if population / built-up density were instead 
randomly distributed across a country’s potentially inhabitable (or “livable”) area.   
 
Whereas de Bellefon et al. originally applied their algorithm to France using detailed data on every 
building footprint in the country as input, we instead apply the algorithm on a much larger spatial scale 
– i.e., to the entire SSA region – using constrained WorldPop data for 250 m*250 m grid cells as input. 
We also modify the algorithm to exclude deserts from the definition of a country’s potentially 
inhabitable area. While excluding deserts is not important for France, it is for SSA countries such as 
Mauritania, Niger, Mali, and Chad. For all four of these countries, more than 50 percent of their land 
areas are desert.10 Not excluding deserts would mechanically decrease the counterfactual density and 
make these countries appear more urbanized overall than they really are. Our exclusion of deserts, and, 
more generally, of uninhabitable areas, also distinguishes our application of the “dartboard” algorithm 
from the version applied by Henderson et al. (2022) in their analysis of SSA urbanization dynamics.11 
 
Another notable advantage of the “dartboard” algorithm over other approaches for delineating urban 
areas is that the counterfactual density threshold to be considered significantly urban is specific to each 
cell and, most importantly, relative to a country’s own overall density instead of being common to all 
countries. Therefore, the approach much better discriminates urban areas. This is especially so for either 
very densely populated countries, which appear as very highly urbanized, or very sparely populated 
countries, which appear little urbanized partly by construction in the degree of urbanization and similar 
approaches. 
 
The third, and final, literature to which our paper contributes is the descriptive literature on the 
structures of both urban systems and the internal structures of urban areas. This includes the extensive 

 
8 The degree of urbanization uses a variety of such thresholds to distinguish different types of urban area. In “level 
1” of the approach, a distinction is drawn between urban areas (“towns and suburbs”) that satisfy an overall 
population threshold of 5,000 and a population density threshold of 300 people per km2, and urban centers 
(“cities”) that satisfy thresholds of 50,000 people and 1,500 people per km2 for overall population and population 
density respectively (Dijkstra et al. 2021). 
9 As mentioned above, the Africapolis data utilized by OECD/SWAC (2020) uses a population threshold of 10,000 
to identify urban areas. 
10 The dartboard algorithm also excludes water bodies and both areas at extreme elevations and which have 
extreme slopes from the definition of potentially inhabitable area. 
11 Henderson et al. (2022) also impose thresholds that are constant over time, fixing them to those of the last year 
of observation, 2014, in their data. Given that built-up area has generally expanded overtime, this mechanically 
increases the number of settlements that are identified over time. The full dartboard approach would have allowed 
for an assessment relative to each year’s overall development. 
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literature on Zipf’s law - see, among many others, Gabaix (1999), Eeckhout (2004), Dobkins and 
Ioannides (2001), Black and Henderson (2003), Duranton (2007), Desmet and Rappaport (2017), 
Bosker and Buringh (2017), de Bellefon et al. (2021), Jedwab and Storeygard (2021), Düben and Krause 
(2021), and Henderson et al. (2022). It also includes papers which estimate population density gradients 
for cities and empirically analyze the degree to which urban areas are mono- versus polycentric and the 
number of (sub-)centers that any given urban area has (see McDonald 1987; Giuliano and Small 1991; 
McMillen 2001; Zhou, Hubacek, and Roberts 2015; Ellis and Roberts 2016; Goswami and Lall 2016; 
Roberts 2018; De Bellefon et al. 2021). 
 
The structure of the rest of the paper is as follows. Section 2 describes the data and methodology – i.e., 
the modified “dartboard” algorithm – that we apply to delineate urban areas across SSA. Section 3 
presents descriptive analysis of overall urbanization patterns across SSA countries, which includes 
analysis of Zipf’s law. Section 4 examines how these patterns correlate with both a country’s population 
size and level of development. Section 5 zooms in to provide an overview of patterns relating to the 
internal structures of cities. Section 6 briefly assesses the sensitivity of our results to the alternative use 
of the degree of urbanization approach to delineating urban areas, as well as alternative data choices. 
Section 7 concludes. 
 
2. Methodology and Data 
 
2.1. Dartboard Algorithm 
The methodology that we apply to identify and delineate urban areas across 47 SSA countries is the de 
Bellefon et al. (2021) “dartboard” algorithm. Urban areas are identified as statistically significant peaks 
of (slightly smoothed) population density by comparing the actual spatial distribution of population 
across 250 m*250 m grid cells within each individual country against a counterfactual population 
density distribution for that country that is derived under the assumption of randomness. This implies 
that urban areas are based on country-specific, endogenously derived, population density thresholds. 
Because, inter alia, some cells are not considered inhabitable, these thresholds are furthermore specific 
to each cell. One notable advantage of such a relative approach is that it avoids a country being classified 
as almost entirely urban simply because it has a high average population density, which can be a 
problem for absolute threshold approaches (Bosker, Park and Roberts 2021). 
 
Our application of the dartboard algorithm proceeds in four steps. In the first step, a country’s gridded 
population at the 250 m*250 m  resolution is smoothed using a bi-square kernel with a bandwidth of 10 
grid cells.12 Following this, in the second step, 3,000 random reshuffles of a country’s (smoothed) 
populated grid cells are performed over the sub-set of its grid cells which are potentially habitable. This 
leads to a counterfactual population density distribution for the country under the assumption of 
randomness. In the third step, a country’s actual (smoothed) population distribution is compared to its 
counterfactual distribution and grid cells that have an actual population that is above the 95th percentile 
of the counterfactual distribution are classed as urban cells.13 Finally, in the fourth step, contiguous sets 
of urban cells are identified and delineated as urban areas.14, 15  
 
While the above four steps allow us to identify and delineate a country’s urban areas, they do not allow 
us to distinguish between different types of urban areas. We therefore proceed, again for each country, 

 
12 Results are robust to the exact choice of smoothing bandwidth – for example, the urban delineations derived 
using a bandwidth of 5 are very similar to those derived using a bandwidth of 10. Results using bandwidths other 
than 10 are available on request. 
13 While the 95th percentile may be considered an arbitrary choice, it is, nevertheless, less arbitrary than the choices 
of population (density) thresholds that characterize absolute threshold approaches to delineating urban areas. This 
is because of the universality of use of the 5 percent level as a criterion for statistical significance. 
14 Contiguity is defined as Queen’s contiguity (cells share common sides or corners). 
15 Two urban cells are also identified as belonging to the same urban area when they are separated by no more 
than one non-urban cell or by no more than two non-urban cells when one of those cells is uninhabitable. This 
allows for the filling of “holes” within urban areas that arise because of, for example, water bodies or large green 
areas. 
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to perform a second random reshuffling of all grid cells that belong to urban areas to generate a 
counterfactual population density distribution within those areas. Contiguous urban area grid cells that 
have an actual population that is above the 95th percentile of this second counterfactual distribution are 
“urban cores”. Any given urban area may have either zero or one or more  cores. Urban areas that 
possess one or more cores are “cities”, while urban areas that lack a core are “towns”. 
 
In applying the above methodology, the criteria used to designate grid cells as potentially habitable are 
important. Following de Bellefon et al. (2021), we define cells as potentially habitable if they do not: 
(i) intersect with a water body; (ii) are not at high altitude, defined here as below the 99th percentile of 
grid cells with at least one inhabitant in terms of altitude; and (iii) are not on a very steep slope, defined 
here as below the 99th percentile of grid cells with at least one inhabitant in terms of steepness. We also 
define as uninhabitable those grid cells which intersect with a desert. We do this for the 14 SSA 
countries in our sample which have more than 0.5 percent of their land area covered by desert.16  
 
2.2. Data 
The main data that we use as input into the dartboard algorithm is constrained WorldPop gridded 
population data from the University of Southampton’s WorldPop group for the year 2015.17 This data 
has an underlying resolution of approximately 100 m*100 m, but to avoid excessive compute times, we 
aggregate the data into 250 m*250 m grid cells. This aggregation also ensures compatibility with other 
spatial layers that we use to classify cells as potentially habitable. As with other “top down” gridded 
population data sets, the constrained WorldPop algorithm derives a grid by taking population data from 
national censuses for larger sub-national administrative units and distributing this across the cells that 
fall within each unit. In the case of constrained WorldPop, population is spread unevenly across cells 
within a given admin unit based on weights derived from a Machine Learning (ML) model (Stevens et 
al. 2015), only allocating population to cells that are built-up. In turn, the classification of cells as built-
up is based on the extremely detailed map of all building footprints in SSA that was derived under the 
Gates Foundation sponsored Digitize Africa project.18 The quality and resolution of this building 
footprint data is comparable to, if not better than, the building footprint data that de Bellefon et al. 
(2021) use for France in their original application of the dartboard algorithm. 
 
The spatial data used to define a country’s potentially habitable areas come from two sources. That used 
to identify water bodies and deserts come from the European Space Agency’s GlobCover product 
(Bontemps et al. 2013).19 Meanwhile, the data used to measure elevation and slope come from 
SRTM30, which is a near-global digital elevation model (DEM) comprising a combination of data from 
the Space Shuttle Radar Topography Mission flown in February 2000 and the U.S. Geological Survey's 
GTOPO30 data set.20  
 
3. Descriptive Analysis of Overall Urbanization Patterns 
 
3.1. Aggregate differences across countries 
Table 1 presents summary statistics that describe key urbanization and other characteristics across SSA 
countries, while table 2 identifies the countries that have the three largest and smallest values for each 
variable presented in table 1. Before commenting on the urbanization characteristics, it is worth noting 
that SSA countries vary considerably in population, area, and average (overall) population density. 
Hence, population at the 90th percentile of the distribution across countries is 46.8 times that at the 10th 
percentile, while the corresponding ratios for land area and population density are 273.5 and 22.4 (table 
1). The particularly large variation for area reflects the fact that SSA consists of both geographically 

 
16 The 14 countries are: Botswana, Cabo Verde, Chad, Eritrea, Ethiopia, Kenya, Mali, Mauritania, Mozambique, 
Namibia, Niger, Somalia, South Africa, and Eswatini. 
17 We use the “UN adjusted” version of this data in which the national population counts from summing across 
grid cells match national population counts as reported by the United Nations. 
18 See https://ui.adsabs.harvard.edu/abs/2019AGUFMIN11D0688H/abstract. 
19 http://due.esrin.esa.int/page_globcover.php. 
20 See https://icesat.gsfc.nasa.gov/icesat/tools/SRTM30_Documentation.html for more information. 

https://icesat.gsfc.nasa.gov/icesat/tools/SRTM30_Documentation.html
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large countries such as the Democratic Republic of Congo, Sudan and Chad, and tiny island nations 
such as Comoros, São Tomé and Príncipe, and Seychelles (table 2). Meanwhile, we would expect the 
large variation in average population density to, almost mechanically, translate into higher urban shares 
of the population under an absolute approach to defining urban areas such as the degree of urbanization. 
However, given that it is a relative approach, these variations in average absolute population density 
will have no mechanical effect on urban shares of the population as calculated using the dartboard 
approach.21 
 

Table 1: Distribution of urbanization characteristics over 47 SSA countries 
  Percentile 

Variable Unit Mean 
Std. 

Error P10 P25 P50 P75 P90 
Population (mil.) Country 21.0 32.0 1.1 2.5 11.5 23.9 51.5 

Area (‘000s km2) Country 517.0 541.1 4.6 58.0 325.9 831.1 1,258.0 
Pop. density  
(per km2) Country 93.0 121.0 9.0 20.0 51.0 115.0 202.0 

Official urban (%) Country 44.0 17.4 20.5 29.6 43.4 56.1 67.8 
Pop. share (%) Urban Areas 73.8 14.9 61.0 68.0 75.7 83.0 88.6 

Cities 55.1 14.1 38.6 47.4 55.4 64.9 74.1 
Towns 18.7 6.9 10.7 14.8 18.2 23.9 26.4 
Urban Cores 38.4 12.9 22.1 31.2 38.7 44.6 56.0 

Area share (%) Urban Areas 5.8 3.5 2.0 3.5 4.7 7.9 11.2 
Cities 3.3 2.7 0.9 1.4 2.0 4.4 8.1 
Towns 2.5 1.3 0.9 1.6 2.4 3.0 4.0 
Urban Cores 0.7 0.6 0.2 0.3 0.5 0.9 1.3 

Pop. density  
(per km2) 

Urban Areas 913.0 803.0 277.0 405.0 638.0 1,249.0 1,525.0 
Cities 1,374.0 1,202.0 339.0 588.0 1,131.0 1,727.0 2,687.0 
Towns 535.0 560.0 147.0 195.0 370.0 695.0 1,083.0 
Urban Cores 3,959.0 2,480.0 1,171.0 2,383.0 3,632.0 5,387.0 6,070.0 

Area elasticity  Urban Areas 0.90 0.07 0.82 0.85 0.92 0.95 0.97 
Cities 0.86 0.13 0.70 0.77 0.87 0.91 0.96 
Towns 0.98 0.07 0.87 0.94 0.99 1.02 1.05 
Urban Cores 0.93 0.14 0.79 0.84 0.95 0.99 1.02 

Built-up elasticity Urban Areas 1.23 0.35 0.87 1.01 1.22 1.38 1.52 
Cities 1.27 0.31 1.04 1.09 1.21 1.41 1.53 
Towns 1.06 0.39 0.73 0.84 1.06 1.29 1.50 
Urban Cores 1.43 0.53 1.07 1.21 1.43 1.51 1.61 

Notes: Country, Urban areas, Cities, Towns, Urban cores indicate the geographical level for which the statistics are computed. Pop. share 
(Area share, resp.): Population (area, resp.) share of cities, urban areas, and urban cores within the country. Pop. density: Average 
population density. Area elasticity: Elasticity of area with respect to population. Built-up elasticity: Elasticity of built-up with respect to 
population. Statistics are computed over the cross-section of 47 SSA countries. PX corresponds to the Xth centile of the distribution. 

 
Turning to the urbanization characteristics which are derived from the dartboard approach, both tables 
1 and 2 present statistics for four types of urban area. Urban areas refer to all areas identified as urban 
(i.e., all areas which consist of contiguous sets of cells whose population is above the 95 percentile of 
the counterfactual distribution); Cities refer to all urban areas that possess at least one core; and Towns 
to urban areas that do not possess a core. Cities may also be thought of as representing a stricter 
definition of urban than towns. As can be seen from table 1, countries are, on average, much more 
urbanized than official statistics would have us believe – across the 47 SSA countries, the mean 

 
21 Section 4 examines the correlation between a country’s urban share of the population, as well as other key 
urbanization characteristics, and its population density and area. 
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(median) urban “dartboard” share of the population is 73.8 percent (75.7 percent), which is around 30 
percentage points higher than the mean (median) official share. Even if we restrict ourselves just to 
cities, SSA countries appear more urbanized than official statistics suggest. On average, just over 55 
percent of a SSA country’s population lives in cities according to the dartboard approach, while official 
statistics imply that just less than 45 percent live in urban areas on average. In cities, most people, on 
average across countries, live in core areas. This follows from the fact that the mean share of a country’s 
population that lives in cores is 38.4 percent. Cores are more densely populated than the cities of which 
they are a part, which, in turn, are more densely populated than towns. The mean population density of 
towns, in turn, exceeds that for countries overall. 
 
Around these higher than official average levels of urbanization, however, there is also considerable 
variation across countries. This is the case regardless of whether we compare urban population shares 
at the 90th percentile with those at the 10th percentile (table 1) or the countries with the three largest 
urban population shares with the countries with the three smallest (table 2). Thus, for urban areas, 
population shares range from 61.0 percent at the 10th percentile to 88.6 percent at the 90th percentile. If 
we focus just on cities, the inter-decile range in population shares is even larger – from 38.6 percent to 
74.1 percent. Again, it is important to note that this variation, which is also mirrored in the variation in 
the share of a country’s land area that its urban areas and cities occupy, is not driven by differences in 
average population densities across countries given the relative nature of the dartboard approach. 
Rather, the variation reflects differences in the spatial concentration of a country’s own population or, 
to put it another way, the unevenness of the spatial distribution of a country’s population. Hence, from 
table 2, Gabon has a particularly uneven spatial distribution of population, while São Tomé and 
Príncipe, Burundi and even Rwanda have more even distributions (figure 1). The population densities 
of different types of urban area also vary widely across countries. In some cases, such as Namibia, 
Botswana, and South Sudan, average population densities are quite low – below 300 people per km2 – 
even for cities (table 2). 
 

Figure 1: Spatial distributions of population − Gabon and Rwanda, 2015 

  
(a) Gabon (b) Rwanda 

Notes: Maps constructed using constrained WorldPop gridded population data. 
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Table 2: Highest and lowest urbanization characteristics 
Variable Unit Largest 2nd Largest 3rd Largest 3rd Lowest 2nd Lowest Lowest 
Population (mil.) Country Nigeria (185.3) Ethiopia (90.9) Congo, Dem. Rep. (89.1) Cabo Verde (0.5) São Tomé Príncipe (0.2) Seychelles (0.1) 

Area (‘000s km2) Country Congo, Dem. Rep. 
(2,350.1) Sudan (1,859.4) Chad (1,275.0) Comoros (1.9) São Tomé Príncipe (1.1) Seychelles (0.8) 

Pop. density  
(per km2) Country Mauritius (574) Rwanda (442) Comoros (398) Botswana (4) Mauritania (4) Namibia (3) 

Official urban (%) Country Gabon (90.4) São Tomé Príncipe (75.1) Botswana (71.6) Rwanda (17.6) Niger (16.8) Burundi (14.1) 
Pop. share (%) 

Urban Areas Gabon (94.4) Congo Brazzaville (94.0) 
Central African Republic 
(91.6) Rwanda (50.0) Burundi (42.2) São Tomé Príncipe (5.2) 

Cities Gabon (79.4) Kenya (78.6) Botswana (76.0) Rwanda (34.1) Burundi (30.6) São Tomé Príncipe (4.5) 

Towns Mali (35.1) Comoros (31.6) Côte d'Ivoire (28.2) Botswana (8.8) Kenya (4.8) São Tomé Príncipe (0.7) 

Urban Cores Gabon (70.2) Congo Brazzaville (67.6) Botswana (60.8) Rwanda (16.6) Burundi (15.9) São Tomé Príncipe (2.5) 
Area share (%) Urban Areas Mauritius (14.6) Rwanda (14.5) Eswatini (13.8) Botswana (1.5) Gabon (1.4) Mauritania (0.8) 

Cities Mauritius (10.8) Rwanda (8.6) Uganda (8.4) Congo Brazzaville (0.5) Mali (0.5) Mauritania (0.2) 

Towns Eswatini (6.0) Rwanda (5.9) Burkina Faso (5.0) Mauritania (0.6) Botswana (0.5) São Tomé Príncipe (0.3) 

Urban Cores Mauritius (3.4) Seychelles (1.9) Rwanda (1.7) Mali (0.1) Namibia (0.1) Mauritania (0.1) 
Pop. density  
(per km2) 

Urban Areas Comoros (4,561) Mauritius (3,024) Nigeria (2,375) Chad (246) Botswana (206) Namibia (64) 

Cities Comoros (7,498) Mauritius (3,288) Nigeria (2,993) South Sudan (296) Botswana (270) Namibia (84) 

Towns Comoros (3,162) Mauritius (2,263) Nigeria (1,318) 
Central African Republic 
(128) Botswana (68) Namibia (24) 

Urban Cores Comoros (15,246) Nigeria (8,241) Senegal (7,198) South Sudan (1,046) Eswatini (983) Botswana (875) 
Area elasticity  

Urban Areas Sierra Leone (1.01) São Tomé Príncipe (1.00) Rwanda (0.99) Gabon (0.75) 
Central African Republic 
(0.73) Botswana (0.72) 

Cities São Tomé Príncipe (1.47) Eswatini (0.99) Rwanda (0.98) Congo Brazzaville (0.70) Mali (0.70) Gabon (0.68) 

Towns Sierra Leone (1.16) Côte d'Ivoire (1.09) Gambia, The (1.05) 
Central African Republic 
(0.84) Congo Brazzaville (0.84) Botswana (0.81) 

Urban Cores São Tomé Príncipe (1.66) Mali (1.04) Chad (1.03) Ethiopia (0.78) Uganda (0.78) Lesotho (0.73) 
Built-up elasticity Urban Areas São Tomé Príncipe (2.93) Gambia, The (1.74) Côte d'Ivoire (1.58) Mauritania (0.77) Comoros (0.73) Cabo Verde (0.58) 

Cities São Tomé Príncipe (2.93) Cabo Verde (1.74) Liberia (1.64) Madagascar (0.96) Eswatini (0.92) South Sudan (0.81) 

Towns Gambia, The (1.91) Côte d'Ivoire (1.71) Ghana (1.63) Mauritania (0.18) Cabo Verde (0.14) Eritrea (-0.01) 

Urban Cores São Tomé Príncipe (4.64) Eritrea (1.80) Mali (1.70) Mauritius (1.02) Gambia, The (1.01) Cabo Verde (0.58) 
Notes: The table lists the top 3 and bottom 3 countries for each variable with the value taken for the country in brackets. The definition of variables is the same as in Table 1. 
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Finally, tables 1 and 2 present summary statistics for two estimated elasticities – the elasticity of overall 
area with respect to population across different types of urban area and the elasticity of built-up area with 
respect to population across different types of urban area, where a settlement’s built-up area may be less 
than its overall area due to open spaces. For the overall area elasticities, these are estimated to be less than 
1 for most countries for all types of urban area. This implies that a doubling of an urban area’s population 
is associated with a less than doubling of its overall area, hence a higher density. However, for the built-up 
area elasticities, these are estimated to be larger than 1 for a large majority of countries for all types of urban 
area. Indeed, the median (mean) estimated elasticity of built-up area with respect to population is 1.22 
(1.23) for all urban areas and 1.21 (1.27) for cities. Hence, for the median country, a doubling of an urban 
area or city’s population is associated with a 121-122 percent increase in its built-up area.  The finding of 
estimated built-up area elasticities that exceed 1 is in marked contrast with results for developed countries 
and cities globally. Ahfledt and Pietrostefani (2019) estimate an elasticity of approximately 0.60 for a large 
global sample of cities, while de Bellefon et al. (2021) estimate an elasticity of 0.84 for all French urban 
areas, as defined using the dartboard algorithm, with a population greater than 100 and 0.89 for the 500 
largest French urban areas. 
 
One possible explanation for the difference in our estimated built-up area elasticities for SSA countries and 
those from the literature for developed countries is related to possible differences in the costs of vertical 
construction, and the ability of households and firms to cover those costs, in SSA versus developed 
countries.22 It has been argued by, for instance, Lall et al. (2021) and Mukim and Roberts (2023), that 
dysfunctional land markets and, in some cases, misguided planning restrictions – for example, excessively 
stringent building height restrictions and floor area ratios – inflate the costs of vertical development in 
developing country cities. At the same time, because productivity and hence income levels are much lower 
in developing country cities, households and firms are less able to cover the costs of vertical construction 
(i.e., the development of mid- and high-rise buildings), which is much more capital intensive than low-rise 
construction that leads to more horizontal development of an urban area. For these reasons, Lall et al. (2021) 
describe cities in SSA and many other developing countries as expanding like “pancakes” rather than 
developing as “pyramids”, in which case horizontal expansion of a city is accompanied by vertical layering.  
 
An alternative, not necessarily mutually exclusive, explanation for the difference in our estimated 
elasticities for SSA countries (greater than 1) vis-à-vis the estimates (less than 1) for developed countries 
relates to the potential composition of built-up area. Hence, built-up area includes not only residential built-
up area, but also built-up area associated with industrial and commercial uses. If industry is more intensive 
in its use of land than housing and more populous cities in SSA countries dedicate a relatively larger share 
of their land to industrial than to residential uses, this could help explain the high estimated elasticities for 
these countries. This is especially the case if such compositional changes in built-up area across urban areas 
of different size are less evident in developed countries, as we might expect given both their more service-
oriented economies and the tendency of manufacturing to gravitate towards smaller cities, where land tends 
to be cheaper, in these countries (World Bank 2009).23 
 
3.2. Spatial concentration across urban areas 
Having described aggregate differences in basic urbanization characteristics across countries, we now turn 
to the description of urban area characteristics and the spatial concentration of population across urban 
areas. This includes a focus on characteristics of the size-distributions of urban areas, as captured both by 
estimated Zipf’s coefficients and the share of a country’s population that lives in its largest urban area, 
which is a measure of urban primacy. 
  

 
22 This includes both the absolute costs of vertical construction and the costs relative to the price of land. In the case 
of illegal squatter development, the price of land to the household occupying it is zero. 
23 The fact that estimated elasticities of overall area with respect to population tend to be less than 1 for most SSA 
countries while estimated elasticities of built-up area tend to be more than 1 suggests that larger SSA cities tend to 
have more in-fill development.  
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Table 3: Distribution of city characteristics and concentration between cities  
across 47 SSA countries 

  Percentiles 
  Units Mean Std. Error P10 P25 P50 P75 P90 
No. units Urban Areas 4,265 4,579 46 700 2,672 5,688 10,638 

Cities 365 459 8 60 172 472 1,271 
Towns 3,900 4,176 36 662 2,535 5,506 9,447 
Urban Cores 542 720 12 66 226 774 1,892 

Average pop. Urban Areas 4,657 4,194 1,504 1,861 2,684 6,562 10,362 
Cities 41,807 31,018 10,128 16,298 35,034 63,701 89,660 
Towns 1,244 1,239 386 505 984 1,400 2,359 
Urban Cores 21,588 16,856 4,928 7,963 17,037 32,079 45,216 

Average area Urban Areas 5.5 3.1 2.7 3.6 5.1 6.1 9 
Cities 37.5 30.4 13.4 18.7 29.7 47.6 55 
Towns 2.5 0.7 1.8 2.2 2.5 2.8 3.5 
Urban Cores 5.3 3.3 2.5 3.1 4.2 6.4 9.1 

Average den. Urban Areas 612 605 178 205 454 806 1,279 
Cities 1,078 1,042 353 552 854 1,301 1,739 
Towns 568 559 151 196 412 765 1,235 
Urban Cores 2,963 2,197 938 1,833 2,676 3,724 4,710 

Pop. P75/P25 Urban Areas 5 2.6 3.1 3.7 4.4 5.1 7.4 
Cities 29.9 101.1 2.8 3.1 3.7 5 73.1 
Towns 3.8 1.2 2.7 3 3.6 4.2 5.4 
Urban Cores 9.5 20.1 3 3.7 4.4 6.1 18.5 

Pop. P90/P10 Urban Areas 24.7 18.8 9.6 14.1 19.5 29.6 41.5 
Cities 114.4 238.1 8.4 11 15.6 30.7 387.4 
Towns 13.9 7.5 7.2 9.1 12.1 16.4 19.6 
Urban Cores 81.8 225.9 12 17.8 29.3 66.1 136.9 

Den. P75/P25 Urban Areas 1.5 0.2 1.3 1.4 1.4 1.5 1.7 
Cities 1.6 0.4 1.3 1.4 1.5 1.7 2 
Towns 1.4 0.2 1.3 1.3 1.4 1.4 1.6 
Urban Cores 1.4 0.3 1.2 1.3 1.3 1.4 1.6 

Den. P90/P10 Urban Areas 2.4 0.6 1.8 2.1 2.3 2.5 2.9 
Cities 2.9 1.6 1.9 2.1 2.4 3 4.1 
Towns 2 0.3 1.7 1.9 2 2.2 2.4 
Urban Cores 2.2 0.9 1.5 1.7 1.9 2.4 3.7 

Share largest Urban Areas 21.3 12.3 7.9 11.7 18.7 29 36.2 
Cities 21.3 12.3 7.9 11.7 18.7 29 36.2 
Towns 0.7 2.5 0.1 0.1 0.2 0.4 1.2 
Urban Cores 15.5 8.6 5.9 9 14.2 19.7 28.2 

Zipf's coef. Urban Areas -0.8 0.2 -1 -0.9 -0.8 -0.7 -0.6 
Cities -0.8 0.2 -1.1 -0.9 -0.8 -0.8 -0.4 
Towns -1.2 0.3 -1.4 -1.3 -1.1 -1 -0.9 
Urban Cores -0.9 0.1 -1.1 -0.9 -0.9 -0.8 -0.7 

Notes: No. units: Number of units delineated. Average pop.: Average population of the units, in persons. Average area: Average area of the units, 
in km2. Pop. P75/P25: Inter-quartile ratio for population. Pop. P90/P10: Inter-decile ratio for population. Share largest: Population share of the 
largest unit. Zipf's coef.: Zipf's coefficient. Statistics are computed over the cross-section of 47 SSA countries, except for the Zipf's Law coefficient 
for which Seychelles is excluded due to its too low number of cities (3). PX corresponds to the Xth percentile of the distribution. 

 
On average, an SSA country’s number of urban areas is large – the mean number of urban areas per country 
is 4,265 (table 3). This partly reflects the fact that, unlike many other approaches, the dartboard approach 
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imposes no minimum population threshold on the definition of urban areas. Hence, at the bottom end of the 
population and area distributions, urban areas can be very small. At the 10th percentile, the population of an 
urban area is just over 1,500, while area is 2.7 km2. In Namibia, the average population of urban areas is 
just 447, while in São Tomé and Príncipe, the average area is just 2.2 km2 (table 4). If we adopt a stricter 
definition of urban by focusing just on cities, then, unsurprisingly, the numbers of cities identified are much 
smaller with population sizes and areas that are, on average, much larger. The mean number of cities per 
country is therefore 365, which is less than one-tenth the mean number of urban areas per country. 
Meanwhile, mean city population is 41,807 and mean city area is 37.5 km2 (table 3). Irrespective of whether 
we consider all urban areas or just cities, the mean number of units per country and the mean population 
are noticeably larger than the corresponding medians, implying a positive skew to the distributions of these 
variables. Interestingly, the mean (median) number of cores per country exceeds the mean (median) number 
of cities, implying that the average city tends to have more than one core.  As well as being larger than 
urban areas in both population and area, cities are also more densely populated (table 3). 
 
Once again, we also observe considerable variation in the data around their averages. This is particularly 
true for the populations of cities – the inter-quartile ratio for city population across all SSA cities is 29.9, 
while the inter-decile ratio is 114.4. The equivalent ratios for population density are much smaller – 1.6 and 
2.9 – but still large (table 3). While this variation describes the entire size distribution of cities across all 47 
SSA countries, the variation is also very large within many individual SSA countries. In Lesotho, city 
population at the 90th percentile is more than 1,000 times that at the 10th percentile (table 4). 
 
These differences in population between cities, whether for SSA as a whole or individual SSA countries, 
imply that population is not evenly distributed across cities, but, rather, is much more concentrated in some 
cities than in others. Related to this, the mean (median) share of a country’s population that lives in its 
largest city is 21.3 (18.7) percent, while more than three quarters of SSA countries have more than 11.7 
percent of their populations living in their largest city (table 3). A quarter of SSA countries have their largest 
city accommodating close to a third of their population. In the most extreme case of the Seychelles, almost 
two-thirds of the population lives in the largest city (table 4). Despite this, levels of urban primacy in SSA 
do not appear, on average, to be higher than those in developed countries. For the 44 countries and territories 
that the World Bank classifies as high-income and provides the necessary data for, the mean (median) share 
of the population that lived in the largest city, as officially defined, in 2021 was 27.1 (21.1) percent.24 This 
suggests that, if anything, levels of urban primacy in SSA are, on average, lower than for developed 
countries.25  
 
More generally, city-size distributions for SSA countries conform quite well to Zipf’s law, which implies 
that a country’s largest city is twice as populous as its second largest, three times as populous as its third 
largest, and so on. The mean estimated Zipf’s coefficient for cities across SSA countries is -0.8, which is 
the same as for urban areas overall.26 Again, this is close to estimates of Zipf’s coefficient for developed 
countries − de Bellon et al., for example, estimate 0.81 for French cities.27 A Zipf coefficient of 0.8 implies 
slightly more spatial concentration across cities than is predicted by the law. In general, this is due to a long 
tail of small cities. As indicated in table 4, however, there are some countries that deviate radically from 
Zipf’s law. Lesotho and Eswatini have estimated Zipf’s coefficients for cities of -0.3, while Rwanda has an 
estimated coefficient of -0.4. This implies that these countries have greater disparities in population between 
cities than predicted by Zipf’s law.  

 
24 This calculation excludes both Hong Kong SAR, China, and Macao SAR, China. 
25 Based on the dartboard approach, 17 percent of France’s population lives in its largest city, Paris (de Bellefon et al. 
2021). 
26 For each country, we estimate Zipf’s coefficient separately for urban areas, cities, towns, and cores using Gabaix 
and Ibragimov’s (2011) “Rank – ½” estimator – i.e., for each country, we estimate log(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 0.5) = 𝑅𝑅 +
𝑏𝑏. log(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖) + 𝜀𝜀𝑖𝑖 where Ranki denotes an urban area’s rank in the size distribution and Sizei its population. 
27 In two of the most comprehensive studies of Zipf’s law, Soo (2005) and Brakman, Garretsen and van Marrewijk 
(2009) report mean estimated Zipf’s coefficients of 0.90 and 0.88 respectively for large samples of countries when 
defining cities as “cities proper”. When cities are instead defined as urban agglomerations, they obtain mean estimated 
Zipf’s coefficients of 1.17 and 1.05 respectively. 
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Table 4: Highest and lowest number, size, and size dispersion of cities 
Variable Unit Largest 2nd Largest 3rd Largest 3rd Lowest 2nd Lowest Lowest 
No units 

Urban Areas 
Congo, Dem. Rep. 
(22,195) Ethiopia (13,104) Sudan (12,490) Cabo Verde (40) São Tomé Príncipe (12) Seychelles (11) 

Cities Ethiopia (1,753) 
Congo, Dem. Rep. 
(1,557) Sudan (1,468) Comoros (4) São Tomé Príncipe (4) Seychelles (3) 

Towns 
Congo, Dem. Rep. 
(20,637) Ethiopia (11,351) Sudan (11,022) Mauritius (33) Seychelles (8) São Tomé Príncipe (8) 

Urban Cores Ethiopia (3,198) Sudan (2,245) Congo, Dem. Rep. (2,085) Comoros (6) Seychelles (4) São Tomé Príncipe (4) 
Average pop. Urban Areas Mauritius (20,995) Kenya (15,579) Comoros (12,586) Mauritania (1,059) São Tomé Príncipe (819) Namibia (447) 

Cities Gambia, The (143,268) Togo (101,557) Kenya (94,181) Botswana (9,438) Chad (6,162) São Tomé Príncipe (2,127) 

Towns Comoros (6,565) Mauritius (5,648) Rwanda (3,270) Botswana (234) São Tomé Príncipe (165) Namibia (57) 

Urban Cores Gambia, The (66,584) Angola (61,420) Togo (59,124) Niger (4,487) Chad (2,693) São Tomé Príncipe (1,183) 
Average area Urban Areas Kenya (21.2) South Sudan (10.9) Ethiopia (9.5) Guinea-Bissau (2.3) Sierra Leone (2.2) São Tomé Príncipe (2.2) 

Cities Namibia (183.9) Kenya (122.3) Zimbabwe (89.5) Mali (9.6) Comoros (8.9) São Tomé Príncipe (5.7) 

Towns South Africa (4.5) Eswatini (4.0) South Sudan (3.8) Sierra Leone (1.5) Seychelles (1.5) São Tomé Príncipe (0.4) 

Urban Cores Zimbabwe (19.7) Angola (12.3) Gambia, The (11.6) Chad (2.3) Niger (2.1) São Tomé Príncipe (0.8) 
Average den. 

Urban Areas Comoros (3,394) Mauritius (2,367) Nigeria (1,619) 
Central African Republic 
(151) Botswana (82) Namibia (32) 

Cities Comoros (6,953) Nigeria (2,625) Mauritius (2,556) Eswatini (283) Chad (283) Botswana (213) 

Towns Comoros (2,998) Mauritius (2,293) Nigeria (1,489) 
Central African Republic 
(116) Botswana (54) Namibia (25) 

Urban Cores Comoros (14,067) Nigeria (7,675) Côte d'Ivoire (5,444) Botswana (711) Eswatini (570) Namibia (535) 
Pop. P75/P25 Urban Areas Botswana (17.9) Seychelles (11.6) Eswatini (9.2) Liberia (2.7) Guinea-Bissau (2.6) Sierra Leone (2.5) 

Cities Seychelles (653.3) Lesotho (184.7) Eswatini (178.6) Côte d'Ivoire (2.5) Mali (2.1) Mauritius (2.0) 

Towns Botswana (7.8) Seychelles (7.3) Eswatini (6.9) Guinea-Bissau (2.5) Sierra Leone (2.4) São Tomé Príncipe (1.5) 

Urban Cores Seychelles (136.6) Cabo Verde (34.0) Lesotho (33.4) São Tomé Príncipe (2.5) Mali (2.4) Comoros (1.8) 
Pop. P90/P10 Urban Areas Botswana (120.3) Eswatini (58.3) South Africa (57.6) Guinea-Bissau (9.3) Sierra Leone (7.2) Liberia (7.1) 

Cities Lesotho (1,016.3) Eswatini (880.6) Uganda (730.7) Côte d'Ivoire (7.8) Niger (7.6) Mali (5.2) 

Towns Botswana (44.8) Eswatini (33.8) South Africa (28.5) Liberia (6.1) Sierra Leone (5.9) São Tomé Príncipe (3.1) 

Urban Cores Cabo Verde (1,547.5) Seychelles (270.9) Lesotho (226.1) Niger (8.7) Mali (8.3) São Tomé Príncipe (4.1) 
Den. P75/P25 

Urban Areas Botswana (2.4) São Tomé Príncipe (2.2) 
Central African Republic 
(1.9) Eswatini (1.3) Mauritius (1.3) Seychelles (1.2) 

Cities Namibia (3.5) Zimbabwe (3.4) Angola (2.0) Ghana (1.3) Mauritius (1.3) Cabo Verde (1.3) 
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Towns São Tomé Príncipe (2.2) Botswana (1.7) 
Central African Republic 
(1.6) Malawi (1.3) Mauritius (1.2) Seychelles (1.2) 

Urban Cores Seychelles (2.8) São Tomé Príncipe (2.3) Lesotho (2.1) Guinea (1.2) Senegal (1.2) Togo (1.2) 
Den. P90/P10 

Urban Areas Botswana (5.3) 
Central African Republic 
(3.6) Kenya (3.1) Malawi (1.8) Mauritius (1.7) Seychelles (1.4) 

Cities Namibia (11.9) Zimbabwe (6.4) Gambia, The (4.6) Cabo Verde (1.7) Seychelles (1.6) Ghana (1.6) 

Towns Botswana (3.0) 
Central African Republic 
(2.5) Namibia (2.5) Lesotho (1.7) Malawi (1.6) Mauritius (1.4) 

Urban Cores Cabo Verde (6.7) Rwanda (3.9) Mauritius (3.8) Benin (1.4) Senegal (1.4) Comoros (1.4) 
Share largest Urban Areas Seychelles (65.9) Gambia, The (50.0) Mauritius (43.8) Nigeria (6.7) South Sudan (6.5) São Tomé Príncipe (3.0) 

Cities Seychelles (65.9) Gambia, The (50.0) Mauritius (43.8) Nigeria (6.7) South Sudan (6.5) São Tomé Príncipe (3.0) 

Towns Comoros (17.0) Seychelles (2.8) Cabo Verde (2.3) Côte d'Ivoire (0.1) Mali (0.1) Nigeria (0.0) 

Urban Cores Congo Brazzaville (35.2) Gambia, The (32.5) Gabon (31.5) Ethiopia (3.8) South Sudan (3.1) São Tomé Príncipe (1.4) 
Zipf's coef. Urban Areas Cabo Verde (-0.4) Gambia, The (-0.5) Lesotho (-0.5) Chad (-1.1) Niger (-1.3) São Tomé Príncipe (-1.3) 

Cities Lesotho (-0.3) Eswatini (-0.3) Rwanda (-0.4) Côte d'Ivoire (-1.1) Niger (-1.1) Mali (-1.2) 

Towns Botswana (-0.7) Eswatini (-0.8) Comoros (-0.8) Liberia (-1.6) Sierra Leone (-1.6) São Tomé Príncipe (-2.5) 

Urban Cores Botswana (-0.5) Cabo Verde (-0.6) Eswatini (-0.7) Liberia (-1.1) Sierra Leone (-1.1) Mali (-1.2) 
Notes: No units: Number of units delineated. Average pop.: Average population of the units, in persons. Average area: Average area of the units, in km2. Pop. P75/P25: Inter-quartile ratio for population. Pop. P90/P10: Inter-decile ratio for 
population. Dens. P90/P10: Inter-decile ratio for population density. Share largest: Population share of the largest unit. Zipf's coef.: Zipf's coefficient. 
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4. Correlates of Urbanization Characteristics across Countries 
 
To gain further insights into how urbanization characteristics vary across SSA countries, we estimate, for 
each characteristic, the following three regressions: 
 

𝑈𝑈𝑈𝑈𝑖𝑖 = 𝑅𝑅 + 𝑏𝑏. ln(𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) + 𝑢𝑢1𝑖𝑖        [1] 
𝑈𝑈𝑈𝑈𝑖𝑖 = 𝑐𝑐 + 𝑑𝑑. ln(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) + 𝑆𝑆. ln(𝐴𝐴𝑅𝑅𝐷𝐷𝐴𝐴𝑖𝑖) + 𝑢𝑢2𝑖𝑖      [2] 
𝑈𝑈𝑈𝑈𝑖𝑖 = 𝑓𝑓 + 𝑔𝑔. ln(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) + ℎ. ln(𝐴𝐴𝑅𝑅𝐷𝐷𝐴𝐴𝑖𝑖) + 𝑗𝑗. ln(𝐺𝐺𝐷𝐷𝑃𝑃_𝑃𝑃𝑈𝑈𝑖𝑖) + 𝑢𝑢3𝑖𝑖   [3] 

 
where UCi denotes the urbanization characteristic in question for country i, POPi a country’s population 
size, DENi a country’s overall average population density, AREAi a country’s land area, and GDP_PCi a 
country’s level of GDP per capita. Equation [1] relates the urbanization characteristic to a country’s overall 
size, as measured by its population. Equation [2] then decomposes the “effect” of a country’s population 
on the urbanization characteristic between the intensive (average overall population density) and extensive 
(area) margins of a country’s size. Finally, equation [3] looks at the correlation between the urbanization 
characteristic and a country’s GDP per capita while controlling for both the intensive and extensive margins 
of its size. We estimate all three equations as cross-sectional OLS regressions for 2015. Given that a 
country’s urbanization characteristics may also potentially affect its GDP per capita, as well as other 
potential endogeneity problems, these regressions should not be interpreted as capturing causal effects, 
merely (partial) correlations in the data. 
 

Table 5: OLS regression results - relationship between country size and urbanization characteristics, 
cities only 

  (1) (2) (3) 
Dependent 
variable Pop. R2 Density Area R2 Density Area GDP  

per cap. R2 

Official urb. -3.38** 0.10 -7.67*** -3.55** 0.18 -4.64** -1.24 10.39*** 0.41 
Pop. share 2.26* 0.07 -3.03 2.04* 0.27 -0.67 3.85*** 8.11*** 0.48 
Area share -0.02 0.00 1.38*** 0.04 0.39 1.52*** 0.15 0.48 0.41 
Pop. density -94.33 0.02 449.27*** -72.15 0.31 497.71*** -35.03 166.49 0.32 
Area elas. -0.02 0.05 0.03* -0.02 0.28 0.03 -0.02* -0.02 0.29 
Built-up elas. -0.08*** 0.17 -0.05 -0.08*** 0.18 -0.06 -0.09*** -0.04 0.19 
No. units 191.97*** 0.44 149.42*** 190.23*** 0.46 140.02** 183.04*** -32.29 0.46 
Average pop. 3895.02 0.04 15837.43*** 4382.45* 0.25 19351.29*** 7074.94*** 12076.20** 0.35 
Average area 3.13 0.03 -2.57 2.90 0.08 0.56 5.30* 10.75* 0.16 
Pop. P75/P25 -28.67*** 0.20 -15.90 -28.15*** 0.23 -7.95 -22.06** 27.32 0.27 
Pop. P90/P10 -36.31* 0.06 15.07 -34.21 0.13 19.40 -30.89 14.90 0.13 
Den. P75/P25 -0.04 0.02 -0.17*** -0.04 0.16 -0.15** -0.02 0.08 0.18 
Den. P90/P10 -0.09 0.01 -0.65*** -0.11 0.18 -0.59** -0.07 0.18 0.19 
Share largest -4.22*** 0.30 -3.35** -4.18*** 0.31 -1.67 -2.89*** 5.77*** 0.45 
Zipf's coef. -0.03 0.05 0.03 -0.03 0.21 0.04 -0.03 0.02 0.21 
Notes: Estimation results for equations [1]-[3] for different urbanization characteristics (listed in the notes of Tables 1 and 3). All regressions based on 47 
countries except those for Zipf's coefficient, which exclude Seychelles due to it only having three cities. 

 
Table 5 presents the results from estimating equations [1]-[3] for each urbanization characteristic. For 
brevity, the table includes only the results for cities – results for other types of urban area are presented in 
Annex Table A1. Several interesting findings regarding the correlates of SSA urbanization characteristics 
emerge. First, there is a strong and statistically significant negative relationship between an SSA country’s 
overall population size and the share of its population that lives in officially defined urban areas – i.e., more 
populous SSA countries tend to have lower official urban population shares (col. [1]). This negative 
relationship between a country’s official level of urbanization and its size exists at both the intensive and 
extensive margins but is stronger at the former margin (col. [2]). Controlling for size, a country’s official 
urbanization level is then also strongly correlated with its GDP per capita, confirming the well-known 
existence of a positive relationship between a country’s level of urbanization and its level of development 
(col. [3]). Including GDP per capita in the regression, does, however, lead to a loss of significance of area 
in the relationship with a country’s official urbanization level. Overall, therefore, SSA countries that are 
more developed and less densely populated have higher official urbanization levels. 
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Controlling for size, the existence of a positive relationship between a country’s level of GDP per capita 
and its level of urbanization continues to hold when, instead of using official definitions of urban areas, we 
define urban areas as cities using the dartboard approach. However, the share of population that lives in 
cities tends to be significantly larger for more populous SSA countries, the opposite of what we found for 
official definitions of urban areas. This tendency for more populous SSA countries to have a larger share 
of their populations living in cities is driven by the extensive margin – i.e., by area rather than by population 
density. GDP per capita, area and overall average population density alone account for almost half of the 
variation in the shares of population that live in cities across SSA countries. 
  
For the share of a country’s land area that is occupied by cities, the results are very different. Hence, neither 
a country’s level of development nor its area is correlated with this share (col. [3]). However, countries that 
are more densely populated on average tend to have larger shares of their areas dedicated to cities, 
suggesting that cities are more “sprawling” for these countries, perhaps because of stronger congestion 
forces that bid-up the price of land and push cities outward. Consistent with this, more densely populated 
countries also tend to have more densely populated cities, irrespective of whether we control for a country’s 
level of development (cols. [2] and [3]). Unsurprisingly, countries that are more populous at either the 
intensive or extensive margins tend to have more cities, although there is no correlation between a country’s 
level of development and its number of cities. This suggests that, as SSA countries become richer, they also 
become urbanized not because of the emergence of new cities, but because the existing set of cities become 
more populous. Consistent with this, both the average population and average area of a country’s cities are 
significantly positively correlated with its GDP per capita, controlling for country size (col. [3]).  
 
In terms of the size distribution of cities, more developed and geographically smaller SSA countries tend 
to exhibit higher levels of urban primacy (i.e., have larger shares of their populations living in the largest 
city) (col. [3]). The positive relationship with GDP per capita, conditional on controlling for a country’s 
overall size, is consistent with SSA countries being on the upward sloping section of a spatial Kuznets curve 
in which population concentration at first increases with GDP per capita at low levels of development before  
starting to decline above some critical level of development. Such a relationship is, in turn, rationalized by 
the tendency of population and resources to first concentrate in a few cities as countries start to develop 
before later deconcentrating to secondary and other smaller cities as, inter alia, rising land costs and 
improved transportation networks incentivize relatively land intensive industries to deconcentrate to 
smaller cities (World Bank 2009). We also observe that more populous countries tend to have a smaller 
spread of population sizes across cities, regardless of whether we look at the inter-quartile or inter-decline 
ratio. There is, however, no correlation between a country’s estimated Zipf coefficient and any of the three 
country characteristics – average population density, area, or GDP per capita – examined. 
 
5. Spatial Concentration within Cities 
 
Having described patterns of urbanization across SSA countries, at both the aggregate and urban area levels 
in Sections 3 and 4, we now turn to describe features of the internal structures of cities and how these differ 
across SSA countries and cities. Given that comprehensive evidence is generally lacking on the internal 
structures of cities, especially for SSA, this arguably represents the most novel part of our analysis. Tables 
6-8 present our results. Tables 6 and 7 provide descriptive evidence on population and built-up density 
gradients within cities respectively. Meanwhile, Table 8 provides descriptive evidence on the numbers of 
centers within cities. For brevity, we, again, only focus on cities in this section of the paper. This is because 
the internal structures of cities are likely to be more complicated than those of towns.28,29 
 
5.1. City population density gradients 
The first row of Table 6 presents summary statistics for triplets of 𝑅𝑅2 values for the following three sets of 
grid cell level regressions, which are estimated separately for each country, pooling all cities within a 
country (i.e., the first-row reports [𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒.[4]

2 ,𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒.[5]
2 ,𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒.[6]

2 ]):   
 

𝑙𝑙𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) = 𝛼𝛼 + 𝜃𝜃𝑐𝑐(𝑖𝑖) + 𝜀𝜀1𝑖𝑖       [4] 

 
28 Results have also been generated for towns and are available on request. 
29 Table A4 in the Annex reports results from OLS regressions which examine the correlation, across SSA countries, 
between average within-city characteristics and country size. We do not focus on these results in the main text because 
we lack clear theory on these relationships. 
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𝑙𝑙𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) = 𝛼𝛼 + 𝜃𝜃𝑐𝑐(𝑖𝑖) + 𝛽𝛽 ln(𝑑𝑑𝑖𝑖) + 𝜀𝜀2𝑖𝑖      [5] 
𝑙𝑙𝑅𝑅(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) = 𝛼𝛼 + 𝜃𝜃𝑐𝑐(𝑖𝑖) + 𝛽𝛽𝑐𝑐(𝑖𝑖) ln(𝑑𝑑𝑖𝑖) + 𝜀𝜀3𝑖𝑖     [6] 
 

where 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 denotes the average population density of grid cell i, 𝜃𝜃𝑐𝑐(𝑖𝑖) a city-specific fixed effect for city 
c where cell i is, and 𝑑𝑑𝑖𝑖 the distance from the centroid of cell i to the city’s barycenter of all its cells weighted 
by their populations (i.e., the center of the city’s population “mass”).30 The difference between equations 
[5] and [6] is that while the former constrains the population density gradient to be the same for all cities 
within a country, the latter allows it to differ across cities within a country. 
 
For any given country, the 𝑅𝑅2 from the estimation of equation [4] measures how much of the variation in 
population density across the grid cells that belong to its cities can be explained by differences in population 
density between its cities. Correspondingly, (1 − 𝑅𝑅2) measures the variation that is attributable to cell level 
variation within cities. As can be seen from table 6, both the mean and median 𝑅𝑅2 across all SSA countries 
are 0.07. Hence, on average for SSA countries, variation across cities only accounts for 7 percent of the 
variation in population density across the cells that belong to those cities, implying that 93 percent of the 
variation occurs within cities. Even at the 90th percentile of the distribution of estimated 𝑅𝑅2 values, only 12 
percent of the variation in population density across cells is explained by the variation across cities. 
 

 Table 6: Distribution of within-city population density gradients over 43 SSA countries 
  

Row   Mean Std. 
Error P10 P25 P50 P75 P90 

1 
R2 pop. 
[𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒.[4]

2 ,𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒.[5]
2 ,𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒.[6]

2 ] 
0.07/ 

0.16/0.20 
0.03/ 

0.09/0.09 
0.03/ 

0.05/0.08 
0.04/ 

0.08/0.13 
0.07/ 

0.13/0.19 
0.10/ 

0.24/0.27 
0.12/ 

0.28/0.32 
2 Pop. grad. sh. <0 0.81 0.18 0.54 0.74 0.88 0.93 0.95 
3 Pop. grad. sh. ns 0.18 0.18 0.04 0.07 0.11 0.24 0.44 
4 Pop. grad. sh. >0 0.01 0.02 0 0 0.01 0.02 0.03 
5 Pop. grad. Av. -0.89 0.5 -1.53 -1.17 -0.83 -0.49 -0.26 
6 Pop. grad. P10 -2.96 0.79 -3.91 -3.63 -2.84 -2.39 -2.06 
7 Pop. grad. P25 -2.4 0.72 -3.23 -2.98 -2.36 -1.81 -1.6 
8 Pop. grad. P50 -1.73 0.64 -2.42 -2.11 -1.73 -1.28 -0.97 
9 Pop. grad. P75 -1.11 0.48 -1.67 -1.44 -1.09 -0.79 -0.45 

10 Pop. grad. P90 -0.61 0.38 -1.03 -0.8 -0.62 -0.41 -0.22 
Notes: Row 1: R2 for the estimation of equations [4] – [6] for population density.  Pop. grad. sh. <0: Share of cities with significant (10% threshold) 
negative population density gradient. Pop. grad. sh. ns: Share of cities with non-significant (10% threshold) population density gradient. Pop. grad. 
sh. >0: Share of cities with significant (10% threshold) positive population density gradient. Pop. grad. Av.: average (over all cities) population 
density gradient (when significantly (10% threshold) different from zero). Pop. grad. PXX: Population density gradient for the city at the XXth centile 
for the gradient value. Statistics are computed over the cross-section of 43 SSA countries, Comoros, Madagascar, Seychelles and São Tomé Príncipe 
being excluded for the within-city statistics given their to low number of cities or of centers in these cities  PX corresponds to the Xth percentile of 
the distribution. 
 

By adding ln (𝑑𝑑𝑖𝑖) to equation [4], equation [5] allows a grid cell’s average population density not only to 
vary across a country’s cities, but also with the distance between that cell and the barycenter of the city of 
which it is a part. As can be seen, the mean 𝑅𝑅2 of 0.16 from the estimation of equation [5] for each country 
is more than double the mean 𝑅𝑅2 of 0.07 from the estimation of equation [4] for each country.31 Hence, 
distance to a city’s barycenter is an important source of population density variation at the grid cell level.  
The importance of distance further increases when we allow distance gradients to vary across a country’s 
cities, as in equation [6]. This follows from the fact that both the mean and median 𝑅𝑅2 values from the 
estimation of equation [6] are greater than the corresponding 𝑅𝑅2 values from the estimation of equation [5]. 
At the 90th percentile across countries, the city-specific fixed effects and distance to a city’s barycenter can, 
when allowing for heterogeneity in distance gradients across cities, account for almost a third of the 
variation in population density across individual grid cells. This increase in explanatory power is to be 

 
30 The concept of a city’s barycenter should not be confused with the concept of city centers that is discussed in Section 
5.3 below. Hence, while a city’s barycenter is unique, a city may have one or more centers, and, under special 
circumstances, it may even have no statistically identifiable center at all.  
31 Given that equations [4]-[6] are estimated at the grid cell level for each country, each is based on an extremely large 
number of observations. As such, whether the 𝑅𝑅2 is adjusted or not for the number of degrees of freedom makes no 
difference to the discussion. 
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expected given that urban economic theory – i.e., the Alonso-Muth-Mills model – implies that a city’s 
population density gradient will depend on commuting costs to its center, which include both monetary 
costs and the opportunity cost of the time spent commuting (Alonso 1964; Mills 1967; Muth 1969). These 
costs are likely to vary across cities due to, for example, variations in the quality of transport infrastructure.  
  
For most cities in most SSA countries, the population density gradients estimated from equation [5] are 
also negative (rows 2-4, Table 6).  Hence, on average across countries, 81 percent of cities have density 
gradients that are significantly negative at the 10 percent level, while 18 percent have gradients that are 
either insignificantly different from zero or which cannot be estimated because the city is too small. It 
follows that only 1 percent of cities have gradients that are significantly positive. For these cities, population 
density tends to increase with distance to the barycenter, implying that the location of a city’s weighted 
population center does not coincide with its location of peak population density. 
  
This dominance of negative density gradients, which is again consistent with the Alonso-Muth-Mills model, 
suggests that most SSA cities are monocentric. When population density gradients are constrained to be the 
same across all a country’s cities, as in the estimation of equation [4], the mean (median) estimated gradient 
across countries is -0.89 (-0.83) (row 5, Table 6). This implies that a doubling of distance to a city’s 
barycenter is associated with, on average, a 46 (44) percent decline in population density.32  Across 
countries, the gradient, when constrained to be the same across cities, varies from -1.53 at the 10th percentile 
to -0.26 at the 90th percentile. Hence, there is significant variation in the estimated gradient across countries.  
As Table A2 in the Annex shows, the three countries that have the steepest density gradients are Mali (-
2.26), Cote d’Ivoire (-2.06) and Congo Brazzaville (-1.74). Meanwhile, the three countries that have the 
shallowest gradients are Eswatini (-0.12), Malawi (-0.23), and South Sudan (-0.24). Within countries, when 
allowing for heterogeneity, mean density gradients vary from -2.96 at the 10th percentile to -0.61 at the 90th 
percentile, as can be seen by comparing the results in rows 6-10 of Table 6. 
 
5.2. Built-up density gradients 
Table 7 follows the same structure as Table 6 except that instead of reporting results for grid cell population 
densities within cities, it reports results for grid cell built-up densities within cities. These results are again 
obtained from estimating equations [4]-[6], except that, this time, 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 denotes a cell’s built-up density 
instead of its population density. As can be seen from row 1 of the table, on average across countries, much 
more of the cell-level variation in built-up density, compared to the cell-level variation in population 
density, within cities can be accounted for by differences between cities. Hence, the mean (median) 𝑅𝑅2 
across countries for the regressions that only include city fixed effects is 0.29 (0.28). This is not to say, 
however, that a cell’s distance to a city’s barycenter is not important. Quite the opposite − when a cell’s 
built-up density is also allowed to depend on this distance, the estimated mean (median) 𝑅𝑅2 across countries 
increases to 0.47 (0.49). When built-up density gradients are further allowed to vary in slope across a 
country’s cities, the mean (median) 𝑅𝑅2 becomes 0.53 (0.54). Hence, 53-54 percent of the variation in built-
up density across city cells can be “explained” by the combination of the distance to a city’s barycenter and 
average differences in built-up density across cities. At the 90th percentile across countries, these two factors 
account for 65 percent of the variation, while, even at the 10th percentile, they account for 40 percent. 
 

 
32 2−0.89 − 1 = 0.460 and 2−0.83 − 1 = 0.437. 
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 Table 7: Distribution within-city built-up density gradients over 43 SSA countries 
 

Row   Mean Std. 
Error P10 P25 P50 P75 P90 

1 
R2 built-up 
[𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒.[4]

2 ,𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒.[5]
2 ,𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒.[6]

2 ] 
0.29/ 

0.47/0.53 
0.11/ 

0.13/0.12 
0.15/ 

0.31/0.40 
0.23/ 

0.41/0.46 
0.28/ 

0.49/0.54 
0.33/ 

0.55/0.62 
0.41/ 

0.60/0.65 
2 Built-up grad. sh. <0 0.76 0.22 0.45 0.56 0.82 0.95 0.97 
3 Built-up grad. sh. ns 0.22 0.21 0.02 0.03 0.16 0.38 0.54 
4 Built-up grad. sh. >0 0.02 0.02 0 0.01 0.01 0.02 0.03 
5 Built-up grad. Av. -1.35 0.38 -1.86 -1.67 -1.31 -1.1 -0.87 
6 Built-up grad. P10 -2.45 0.39 -2.87 -2.66 -2.52 -2.26 -2.13 
7 Built-up grad. P25 -1.94 0.3 -2.3 -2.1 -1.97 -1.82 -1.72 
8 Built-up grad. P50 -1.55 0.26 -1.79 -1.71 -1.62 -1.43 -1.29 
9 Built-up grad. P75 -1.14 0.23 -1.37 -1.34 -1.17 -1.01 -0.85 

10 Built-up grad. P90 -0.73 0.26 -1.01 -0.95 -0.75 -0.54 -0.4 
Notes: Row 1: R2 for the estimation of equation [4] – [6] for built-up density. Built-up grad. sh. <0: Share of cities with significant (10% threshold) 
negative built-up density gradient. Built-up grad. sh. ns: Share of cities with non-significant (10% threshold) built-up density gradient. Built-up grad. 
sh. >0: Share of cities with significant (10% threshold) positive built-up density gradient. Built-up grad. Av.: average (over all cities) built-up density 
gradient (when significantly (10% threshold) different from zero). Built-up grad. PXX: Built-up density gradient for the city at the XXth centile for 
the gradient value.Statistics are computed over the cross-section of 43 SSA countries, Comoros, Madagascar, Seychelles and São Tomé Príncipe 
being excluded for the within-city statistics given their to low number of cities or of centers in these cities. PX corresponds to the Xth percentile of 
the distribution. 

 
As with population density, most cities within most countries have negative estimated built-up density 
gradients (rows 2-4, Table 7) with the mean (median) estimated gradient across countries being -1.35 (-
1.31) when gradients are constrained to being the same for all cities within a country (row 5). Estimated 
built-up density gradients tend to be steeper than estimated population density gradients – i.e., built-up 
density declines faster with distance from the barycenter than does population density. One potential 
explanation for this is that city centers tend to have relatively more commercial and relatively less 
residential buildings than do more “suburban” areas of cities. 
 
5.3. Numbers of (sub-)centers within cities 
The above discussion of density gradients has focused on the concept of a city’s barycenter, which is its 
gridded population weighted center. A distinct, but related concept to this, is the concept of a city’s center 
as a significant peak of population density. If a city is monocentric and has a single such peak, then the 
location of this center will line-up well with its barycenter. However, if the city is polycentric and has 
several, geographically distinct, significant peaks of density then the barycenter may fall between those 
peaks/centers. This is analogous to, for example, the center of mass, i.e., the barycenter, of two roughly 
equally sized planets falling in-between those two planets. To identify a city’s center(s) − i.e., its significant 
peaks of population density − we perform 3,000 random reshuffles of its cells within the city. This yields a 
counterfactual distribution of population within the city under the assumption of randomness. A center is 
then a contiguous set of cells within the city whose population density is above the 95th percentile of the 
city’s counterfactual distribution.33  
 
In the SSA context, it is important to note that a city center(s) identified in this way may or may not represent 
a commercial or business district. This is because the areas of greatest population density within a city may 
be slum neighborhoods. To empirically distinguish between a city’s business/commercial centers and its 
residential population centers would require spatially fine-grained data on employment, which is, 
unfortunately, not available, in addition to our current spatial data on population.  
 
As noted in the previous section, the fact that most SSA cities have negative estimated population density 
gradients with respect to their barycenters suggests that the typical SSA city is monocentric. Consistent 
with this, Table 8 shows that the mean (median) number of centers per city across countries is 1.65 (1.51), 

 
33 It is important to note here the distinction between a city’s “center” and its “core.”  As described in Section 2.1, 
“cores” are identified through a second-order random reshuffling of urban grid cells across all urban areas of the 
country and, by definition, all cities must have at least one core. By contrast, centers are identified by the random 
reshuffling of cells within each individual city. 
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while the mean (and median) share of cities that have a single center is 80 percent (rows 1 and 3 
respectively). Moreover, in 90 percent of countries, 90 percent of cities have a single center (row 3).34 
 
Notwithstanding the dominance of monocentric cities, however, the above results still imply that, on 
average, one-fifth of an SSA country’s cities have multiple centers. For one-half of these cities, the number 
of centers is two (row 4, table 8). Thus, most cities are either monocentric or, if not, duo centric in terms of 
their spatial population distributions.  The largest cities in SSA, however, have many centers. Hence, the 
mean number of centers in a country’s largest city is 46, while the median is 4 (row 7). The fact that the 
mean is far higher than the median implies there is a strong positive skew to the distribution with a few 
countries having largest cities with very many centers.  Thus, for 10 percent of SSA countries, the largest 
city has a remarkable 195 or more centers. As per the discussion above, many of these “centers” are likely 
to be densely populated slum areas, many of which may be quite small. As Table A3 in the Annex shows, 
Kenya, Ethiopia, and Niger are the three countries whose largest cities (Nairobi, Addis Ababa, and Niamey 
respectively) have the most centers.35  
 

 Table 8: Distribution of city center characteristics over 43 SSA countries  
   Mean Std. Error P10 P25 P50 P75 P90 
1 No. centers 1.65 0.58 1.11 1.21 1.51 1.81 2.22 
2 Sh. 0 cen. 0.01 0.02 0 0 0 0.02 0.05 
3 Sh. 1 cen. 0.8 0.09 0.69 0.74 0.8 0.85 0.9 
4 Sh. 2 cen. 0.1 0.05 0.05 0.07 0.1 0.13 0.16 
5 Sh. 3-5 cen. 0.06 0.04 0.01 0.03 0.06 0.08 0.13 
6 Sh. >6 cen. 0.03 0.03 0 0 0.02 0.04 0.05 
7 #cen. largest 45.98 112.29 1 2 4 14 195 
8 Sh. pop. lar. cen. 0.68 0.08 0.57 0.61 0.67 0.73 0.77 
9 Sh. bui. lar. cen. 0.57 0.07 0.49 0.52 0.57 0.62 0.65 
10 Sh. area lar. cen. 0.26 0.08 0.21 0.22 0.24 0.27 0.38 
11 lar/2nd pop. 12.86 15.79 3.96 5.24 6.54 12.37 35.29 
12 lar/2nd bui. 1852.1 9456.56 13.56 25.76 54.98 331.01 1405.52 
13 lar/2nd area 11.25 14.19 3.97 5.05 6.32 10.96 27.81 
14 Zipf centers -0.57 0.12 -0.72 -0.67 -0.58 -0.5 -0.4 
15 Elas. #cen. pop. 0.2 0.12 0.04 0.1 0.17 0.29 0.35 

Notes:  No. centers: Number of centers per city. Sh. 0 cen.: Share of cities without center. Sh. 1 cen.: Share of cities 
with one center. Sh. 2 cen.: Share of cities with two centers. Sh. 2-3 cen.: Share of cities with two to five centers. Sh. 
>6 cen.: Share of cities with 6 or more centers. #cen. largest: Number of centers of the largest city. Sh. pop. lar. cen.: 
City population share of the largest center. Sh. bui. lar. cen.: City built share of the largest center. Sh. area lar. cen.: 
City area share of the largest center. lar/2nd pop.: Relative population of the largest over the second largest center. 
lar/2nd bui.: Relative built of the largest over the second largest center. lar/2nd area: Relative area of the largest over 
the second largest center. Zipf centers: Within city population Zipf's coefficient for city centers. Elas. #cen. pop.: 
elasticity of the number of centers in the city with respect to its population. Statistics are computed over the cross-
section of 43 SSA countries, Comoros, Madagascar, Seychelles and São Tomé Príncipe being excluded for the within-
city statistics given their to low number of cities or of centers in these cities. PX corresponds to the Xth percentile of the 
distribution. 

 
On average across countries, a city’s largest, and, typically, only, center, occupies 26 percent of its land 
area but accounts for 57 percent of its built-up density and 68 percent of its population (rows 8-10, Table 
8). This is consistent with the fact that, by definition, centers are contiguous sets of grid cells with very high 
population densities relative to all other cells within a city. For cities that have multiple centers, the largest 
center is typically much larger than the second largest center. Thus, across countries, the population of a 
city’s largest center is, on average, almost 13 times that of its second largest center, while the area occupied 
by a city’s largest center is, on average, more than 11 times that occupied by its second largest center (rows 

 
34 As shown in row 2 of table 8, there is a very small minority of cities that have no statistically identifiable centers. 
A city can have no statistically significant population density peak if its population is very evenly distributed across 
its extent. 
35 Even though the largest cities have many centers, for 72 percent of SSA countries, the city with the most centers is, 
somewhat surprisingly, not its largest city. And, across countries, the mean number of centers in the city with the most 
centers is 61. 
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11 and 13).36 Consistent with this, when we estimate Zipf’s law for the populations of centers for cities with 
multiple centers, we find an estimated Zipf coefficient that is, on average across cities and countries, 
negative (row 14), with even lower absolute values than those presented above for cities. By contrast, the 
estimated elasticity of the number of centers with respect to a city’s population is, on average across cities 
and countries, positive (row 15), although these estimates, as with the estimated Zipf coefficients, need to 
be treated with care given that most cities only have a single center.   
 
6. Comparison with Degree of Urbanization  
Our analysis so far has relied on the dartboard approach to both identify and delineate urban areas for SSA 
countries. However, there are other approaches to urban area identification and delineation. One of these is 
the “degree of urbanization” approach of Dijkstra and Poelman (2014) and Dijkstra et al. (2021). While, 
compared to the dartboard approach, this approach has the shortcoming of being more reliant on arbitrary 
thresholds to identify and delineate urban areas, it is, nevertheless, an approach that has been widely applied 
both in academic papers (see, for example, Henderson et al. 2019) and policy reports by international 
agencies, including by the World Bank (Ferreyra and Roberts 2018; Lall et al. 2021; Mukim and Roberts 
2023). Given this, in this section we provide a brief comparison of our results from the dartboard approach 
with those obtained from the alternative use of the degree of urbanization. In doing so, we focus, for brevity, 
on results for differences in levels of urbanization across countries.  
 
The degree of urbanization defines an urban area as a contiguous set of 1 km2 gridded population cells in 
which each cell has a population density of at least 300 people per km2 and the overall population of the set 
of cells is at least 5,000. As such, unlike the dartboard approach, which is a relative approach, the degree 
of urbanization is an absolute approach to urban area identification and delineation.37 It will also be noted 
that the use of a 1 km2 gridded population layer is part of the definition of the degree of urbanization. In 
applying the degree of urbanization, we therefore aggregate the constrained WorldPop data to this 
resolution rather than the 250 m*250 m resolution that we use for the dartboard approach.  
 

Figure 2: Correlation with official urban population shares across 46 SSA countries – dartboard 
approach and degree of urbanization 

  
(a) Dartboard (R2 = 0.28) 

 
(b) Degree of Urbanization (R2 = 0.13) 

Note: In each graph, the x-axis shows the share of a country’s population that lived in officially defined urban areas in 2015 based on data from 
the United Nations World Urbanization Prospects: 2018 Revision database (https://population.un.org/wup/). The y-axis in part (a) shows a 
country’s urbanization rate based on the dartboard approach, while the y-axis in part (b) shows a country’s urbanization rate based on the degree 
of urbanization. Results exclude São Tomé Príncipe. 

 
As Figure 2 shows, as with the dartboard approach, estimates of urbanization rates – i.e., of the share of a 
country’s population that is urban – derived from the degree of urbanization tend to be higher than 
urbanization rates based on official national definitions of urban areas. Therefore, according to both 

 
36 Consistent with this, the shares of population and area accounted for by all centers within a city are, on average 
across countries, not much higher than the shares accounted for by a city’s largest center (results available on request).   
37 A related difference between the two approaches is that our application of the dartboard approach takes account of 
the presence of significant desert areas, which the degree of urbanization does not. Hence, the dartboard approach 
identifies urban grid cells based on their density relative to the density of all cells within a country that are potentially 
habitable, where the potentially habitable areas exclude deserts. 
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approaches, most SSA countries are more urbanized than official definitions would have us believe, 
although the number of countries for which this is the case is less for the degree of urbanization (33 out of 
46 countries examined) than it is for the dartboard approach (45 out of 46 countries). Estimates of 
urbanization rates from both approaches are also positively correlated with official urbanization rates. As 
can be seen from the respective 𝑅𝑅2 values in Figure 2, however, the strength of this positive correlation is 
stronger for the dartboard approach than it is for the degree of urbanization. This is mainly because of four 
countries – Burundi (BDI), Comoros (COM), Mauritius (MUS), and Rwanda (RWA) – that have relatively 
low official urbanization rates, but for which the degree of urbanization generates very high estimated rates 
of urbanization. It is no coincidence that these four countries are among the most densely populated in SSA 
– indeed, as shown in Table 2, Mauritius, Rwanda, and Comoros are the three most densely populated in 
the region. Because it is an absolute approach to urban area identification and delineation, unlike with the 
dartboard approach, these high average population densities almost mechanically translate into high 
estimated urbanization rates under the degree of urbanization. Once Burundi, Comoros, Mauritius, and 
Rwanda are dropped from the estimation, the correlation of the urbanization rates derived from the degree 
of urbanization with the official rates becomes much stronger (the 𝑅𝑅2 increases from 0.13 to 0.49). 
 
Although urbanization rates derived from both the dartboard and degree of urbanization approaches are 
positively correlated across countries with official rates, the urbanization rates from the two approaches are  
uncorrelated with each other – the 𝑅𝑅2 from regressing the dartboard urbanization rate on the corresponding 
degree of urbanization rate is zero.  This lack of correlation, however, is again driven by the same four 
highly densely populated SSA countries – Burundi, Comoros, Mauritius, and Rwanda – for which the 
degree of urbanization generates very high estimated rates of urbanization. Once these four countries are 
excluded, the correlation between the urbanization rates from the two approaches becomes positive and 
statistically significant at the 5 percent level ( 𝑅𝑅2 = 0.13). 
 
 
Unsurprisingly given the above results, Rwanda, Burundi, Comoros, and Mauritius are the four SSA 
countries for which the urbanization rate based on the degree of urbanization most exceeds the urbanization 
rate based on the dartboard approach (Table 9). In the case of Rwanda, the country is almost 40 percentage 
points more urbanized according to the degree of urbanization than it is according to the dartboard approach 
(see also part (a) of Figure 3). Conversely, however, the dartboard approach implies that Chad, Niger, South 
Sudan, the Central African Republic, and Madagascar are all much more urbanized than the degree of 
urbanization implies (see also part (b) of Figure 3 for an illustration of this for Chad). These differences are 
again related to the fact that the dartboard approach is a relative approach to urban area identification and 
delineation, while the degree of urbanization is an absolute approach. The high urbanization rates for Chad, 
Niger, South Sudan, the Central African Republic, and Madagascar generated by the dartboard approach 
compared to the degree of urbanization reflect highly uneven spatial distributions of population even 
though, compared to Burundi, Comoros, Mauritius and Rwanda, average population densities are relatively 
low.38 
 

Table 9: Largest differences in urban population shares between the dartboard 
(DB) and degree of urbanization (DoU) approaches 

Top 5 – DB > DoU Top 5 – DoU > DB 
Country DB DoU DB - DU Country DB DoU DB - DU 
Chad 83 21.6 61.4 Rwanda 50 89.1 -39.1 
Niger 78.7 26.4 52.3 Burundi 42.2 73.1 -30.9 
South Sudan 87.5 36.5 51 Comoros 67.4 82.4 -15 
Central African 
Republic 91.6 45.3 46.3 Mauritius 76.9 89.9 -13 
Madagascar 75.2 29.7 45.5 Cabo Verde 63.3 65.5 -2.2 
Note: Results based on 46 countries and exclude São Tomé Príncipe. 

 
 

Figure 3: Maps of urban areas in Rwanda and Chad − dartboard -v- degree of urbanization 
 

 
38 A large share of land area in Chad (50.1 percent) and Niger (66.9 percent) is desert. If we were to calculate average 
population densities only over the “potentially habitable” areas of these countries, these would be much higher. 
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(a) Rwanda 
 

 
 

(b) Chad 
 
Note: The two maps are color coded according to whether the dartboard and degree of urbanization approaches agree or disagree on the 
classification of areas as urban. Red indicates areas that both approaches agree are cities, yellow indicates areas that both agree are urban but 
not cities, dark (light) blue indicates areas that the dartboard approach classifies as urban (rural) and the degree of urbanization as rural 
(urban), and orange indicates areas that both approaches agree are urban but for which there is disagreement as to whether they are cities. 
 

  
Finally, and consistent with the above results, there is a strong, and statistically highly significant 
correlation, at the 1 percent level, between the difference in the urbanization rates generated by the 
dartboard and degree of urbanization approaches (i.e., dartboard minus degree of urbanization) and a 
country’s average population density (Figure 4). This, again, reflects the, almost mechanical, effect of a 
country’s average population density on its level of urbanization as implied by the degree of urbanization. 
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Figure 4: Correlation between difference in urban shares and  

average population density across countries (𝑹𝑹𝟐𝟐 = 𝟎𝟎.𝟓𝟓𝟓𝟓) 

 
Notes: Data on average population densities taken from the World Bank’s World Development Indicators (WDI) database 
(https://databank.worldbank.org/source/world-development-indicators). Results exclude São Tomé Príncipe. 

 
It follows from the above discussion that while the dartboard and degree of urbanization approaches agree 
on some of the broad patterns of urbanization in SSA – most notably that most SSA countries are more 
urbanized than official data would have us believe – they can produce, what appear to be, dramatically 
different results for individual countries. These differences, however, reflect the different perspectives – 
absolute versus relative – on urbanization that underpin the two approaches, both of which, especially when 
taken together, yield useful information. As such, the two approaches should be viewed as complements 
rather than substitutes. 
 
7. Summary and Conclusion 
 
Sub-Saharan Africa has, over the last six decades, been among the world’s fastest urbanizing regions. And, 
by 2050, the number of people living in its towns and cities is projected to expand by a further 0.95 billion. 
Despite this, however, remarkably little is known about the detailed anatomy of patterns of urbanization 
across the region’s countries. In this paper, we have attempted to remedy this by applying the dartboard 
algorithm to gridded population data derived from very high-resolution satellite data for all building 
footprints in the region, thereby allowing us to delineate urban areas for 46 SSA countries. Using this data, 
we have provided a detailed descriptive analysis of patterns of urbanization within the region for circa 
2015, including both patterns across and within urban areas.  
 
Our results reveal, inter alia, that SSA countries are generally more urbanized than data on officially 
defined urban areas would have us believe. Despite this, however, there remain large differences in the 
share of people who live in urban areas across countries with the urban share of a country’s population 
being positively correlated with both its level of development and area. Regardless of the type of urban area 
– i.e., cities, towns, or both – considered, most countries, have built-up area elasticities that are greater than 
one, implying that a doubling of an urban area’s population is associated with a more than doubling of its 
built-up area. In this regard, SSA countries appear to differ from high-income countries, which tend to have 
built-up area elasticities that are less than unity. One explanation for this difference may be higher costs of 
vertical development in SSA countries related to dysfunctional land and property markets, as well as 
failures in planning. On other dimensions, however, urbanization patterns within SSA countries appear 
more like those in developed countries. Hence, SSA countries exhibit levels of urban primacy that, on 
average, are similar to those in high-income countries, while Zipf’s law generally holds quite well. As for 
the internal structures of cities, most cities in most SSA countries are monocentric with only a single 
statistically significant peak of population density and both negative population and built-up density 
gradients. However, this is not the case for all cities and the very largest cities in the region have many 
centers of dense population concentration, some of which may reflect densely populated informal 
neighborhoods. Moreover, within cities with multiple centers, there is a very strong rank-size relationship 
among centers, with the largest center having, on average, almost 13 times the population of its second 
largest center, while occupying 11 times as much land. 
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Despite the new insights into patterns of urbanization both across and within SSA countries generated by 
our analysis, there are important limitations that should be noted. Hence, our analysis is limited to a single 
cross-section in time, circa 2015. This is because of the limitations of the underlying gridded population 
data that we rely on as input into our analysis. Thus, the detailed map of all building footprints in the region 
that underpins the derivation of the gridded population data we use is only available for circa 2015. 
Moreover, even for this year, although it is the best available, the quality of the population data that we use 
is ultimately limited by the quality of the underlying population data available from national population 
Censuses in the region. For some SSA countries, this data is quite outdated, while, for many, it is only 
available for large administrative regions as opposed to, for example, small census tracts, which explains 
the need for top-down gridding of the data in the first place. In this sense, improving the quality and spatial 
resolution of available population Census data for SSA countries is crucial to further progress on the 
understanding of urbanization in the region. 
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Annex 
 

Table A1: OLS regression results - relationship between country size and urbanization characteristics, all types of urban area 
  (1) (2) (3) 
Dependent 
variable Type of area Pop. R2 Density Area R2 Density Area GDP per 

cap. R2 

Pop. share Urban Areas 2.92** 0.10 -3.32* 2.67** 0.35 -1.91 3.75*** 4.86** 0.42 

 Towns 0.67 0.02 -0.30 0.63 0.05 -1.24 -0.09 -3.23*** 0.19 

 Urban Cores 1.39 0.03 -5.06*** 1.13 0.39 -3.51** 2.31** 5.32*** 0.50 
Area share Urban Areas 0.02 0.00 2.06*** 0.11 0.47 2.09*** 0.13 0.12 0.47 

 Towns 0.04 0.00 0.67*** 0.07 0.35 0.57*** -0.02 -0.36* 0.40 

 Urban Cores -0.09 0.06 0.25*** -0.07* 0.53 0.30*** -0.03 0.18** 0.59 
Pop. density Urban Areas -69.97 0.02 391.73*** -51.13 0.49 438.19*** -15.53 159.66 0.52 

 Towns -76.16 0.05 259.13*** -62.48* 0.56 279.46*** -46.90 69.89 0.57 

 Urban Cores 91.86 0.00 1146.98*** 134.93 0.26 1217.46*** 188.94 242.23 0.27 
Area elas. Urban Areas -0.00 0.00 0.04*** 0.00 0.41 0.03*** -0.00 -0.01 0.44 

 Towns 0.01 0.06 0.03*** 0.01* 0.21 0.03*** 0.01 -0.02 0.24 

 Urban Cores -0.01 0.01 -0.02 -0.01 0.02 -0.02 -0.01 -0.02 0.03 
Built-up elas. Urban Areas -0.02 0.01 0.09* -0.01 0.16 0.09* -0.01 -0.01 0.16 

 Towns 0.05 0.03 0.17*** 0.05 0.19 0.19*** 0.06 0.07 0.22 

 Urban Cores -0.08* 0.06 -0.06 -0.08* 0.06 -0.09 -0.11** -0.12 0.10 
No. units Urban Areas 1999.27*** 0.49 1228.06** 1967.79*** 0.53 1172.07** 1924.88*** -192.44 0.53 

 Towns 1807.28*** 0.48 1078.61** 1777.54*** 0.52 1032.01** 1741.83*** -160.16 0.52 

 Urban Cores 293.95*** 0.42 242.26*** 291.84*** 0.43 233.91** 285.45*** -28.69 0.43 
Average pop. Urban Areas 103.39 0.00 2517.71*** 201.93 0.48 3124.35*** 666.76** 2084.85*** 0.63 

 Towns -81.86 0.01 649.42*** -52.01 0.51 718.20*** 0.69 236.37 0.53 

 Urban Cores 1235.21 0.01 5342.38** 1402.84 0.10 6881.85** 2582.45 5290.72* 0.16 
Average area Urban Areas 0.46 0.05 0.57 0.46 0.06 0.92* 0.73** 1.21** 0.15 

 Towns 0.16** 0.13 -0.02 0.15** 0.23 0.01 0.18*** 0.13 0.25 

 Urban Cores 0.15 0.01 0.03 0.15 0.01 0.38 0.42 1.21* 0.09 
Pop. 75/P25 Urban Areas -0.52** 0.10 -0.90** -0.54** 0.13 -0.62 -0.32 0.96** 0.22 



29 
 

 Towns -0.14 0.04 -0.36* -0.15 0.08 -0.24 -0.06 0.39* 0.15 

 Urban Cores -6.35*** 0.25 -3.80 -6.25*** 0.28 -2.03 -4.89*** 6.09* 0.33 
Pop. 90/P10 Urban Areas -1.18 0.01 -3.48 -1.28 0.03 -1.73 0.06 6.02* 0.10 

 Towns -0.40 0.01 -1.86 -0.46 0.06 -1.14 0.09 2.47* 0.13 

 Urban Cores -51.99** 0.13 -21.98 -50.76** 0.16 -11.03 -42.37* 37.64 0.18 
den. P75/P25 Urban Areas -0.03 0.05 -0.09*** -0.03* 0.16 -0.08** -0.03 0.01 0.16 

 Towns -0.03** 0.11 -0.05** -0.04** 0.13 -0.05** -0.04** -0.00 0.13 

 Urban Cores -0.11*** 0.38 -0.08** -0.11*** 0.40 -0.07* -0.10*** 0.06 0.42 
den. P90/P10 Urban Areas -0.01 0.00 -0.26*** -0.02 0.28 -0.25*** -0.01 0.06 0.28 

 Towns -0.03 0.02 -0.14*** -0.03 0.27 -0.14*** -0.03 -0.00 0.27 

 Urban Cores -0.23*** 0.16 -0.06 -0.23*** 0.21 -0.02 -0.20** 0.14 0.23 
Share largest Urban Areas -4.22*** 0.30 -3.35** -4.18*** 0.31 -1.67 -2.89*** 5.77*** 0.45 

 Towns -0.56** 0.13 0.07 -0.54** 0.22 0.05 -0.55** -0.06 0.22 

 Urban Cores -2.33*** 0.19 -3.10** -2.36*** 0.20 -2.64** -2.00** 1.59 0.22 
Zipf's coef. Urban Areas -0.03* 0.07 0.01 -0.03* 0.14 0.03 -0.02 0.07** 0.22 

 Towns 0.04 0.04 -0.01 0.04 0.08 0.01 0.05 0.05 0.10 

 Urban Cores -0.03** 0.09 -0.02 -0.03** 0.09 -0.00 -0.01 0.06** 0.20 
Notes: Estimation results for equations [1]-[3] for different urbanisation characteristics (listed in the notes of Tables 1 and 3). All regressions based on 47 countries except 
those for Zipf's coefficient, which exclude Seychelles due to it only having three cities. 
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Table A2: Highest and lowest values for within-city density gradients  

 Largest 2nd Largest 3rd Largest 3rd Lowest 2nd Lowest Lowest 
Population density gradients 

Pop. grad. sh. <0 Cabo Verde (1.00) Gambia, The (1.00) Togo (0.97) Rwanda (0.42) Lesotho (0.30) Eswatini (0.28) 
Pop. grad. sh. ns Eswatini (0.72) Lesotho (0.70) Malawi (0.54) Togo (0.03) Gambia, The (0.00) Gambia, The (0.00) 
Pop. grad. sh. >0 Mauritius (0.08) Burundi (0.06) Rwanda (0.05) Gabon (0.00) Togo (0.00) Togo (0.00) 
Pop. grad. Av. Eswatini (-0.12) Malawi (-0.23) South Sudan (-0.24) Congo Brazzaville (-1.74) Côte d'Ivoire (-2.06) Mali (-2.26) 
Pop. grad. P10 Lesotho (-1.43) Cabo Verde (-1.47) Rwanda (-1.48) Niger (-4.10) Côte d'Ivoire (-4.22) Mali (-4.89) 
Pop. grad. P25 Rwanda (-0.95) Cabo Verde (-1.10) Lesotho (-1.23) Niger (-3.52) Côte d'Ivoire (-3.61) Mali (-4.20) 
Pop. grad. P50 Rwanda (-0.48) Eswatini (-0.50) Lesotho (-0.82) Niger (-2.63) Côte d'Ivoire (-2.87) Mali (-3.47) 
Pop. grad. P75 Rwanda (-0.23) Mauritius (-0.34) Malawi (-0.44) Botswana (-1.76) Côte d'Ivoire (-2.20) Mali (-2.36) 
Pop. grad. P90 Mauritius (0.60) Rwanda (0.05) Eswatini (-0.12) Sierra Leone (-1.20) Mali (-1.45) Côte d'Ivoire (-1.52) 

Built-up density gradients 
Built grad. sh. <0 Cabo Verde (1.00) Gambia, The (1.00) Cabo Verde (1.00) Chad (0.36) Eritrea (0.31) South Sudan (0.27) 
Built grad. sh. ns South Sudan (0.72) Eritrea (0.68) Chad (0.64) Cabo Verde (0.00) Cabo Verde (0.00) Cabo Verde (0.00) 
Built grad. sh. >0 Eswatini (0.06) Burundi (0.06) Rwanda (0.05) Mauritius (0.00) Mauritius (0.00) Sierra Leone (0.00) 
Built grad. Av. Mauritius (-0.44) Eswatini (-0.69) Niger (-0.83) Congo Brazzaville (-1.91) Mali (-1.98) Burkina Faso (-2.14) 
Built grad. P10 Mauritius (-0.74) Rwanda (-1.69) South Africa (-2.09) Senegal (-2.95) Cabo Verde (-2.98) Mauritania (-3.10) 
Built grad. P25 Mauritius (-0.72) Cabo Verde (-1.38) Rwanda (-1.49) Gabon (-2.34) Angola (-2.45) Guinea-Bissau (-2.49) 
Built grad. P50 Mauritius (-0.47) Rwanda (-1.05) Eswatini (-1.06) Gabon (-1.81) Angola (-1.88) Guinea-Bissau (-2.05) 
Built grad. P75 Mauritius (-0.35) Eswatini (-0.59) Rwanda (-0.71) Mauritania (-1.39) Guinea (-1.39) Burkina Faso (-1.45) 
Built grad. P90 Eswatin (0.15) Rwanda (-0.28) Mauritius (-0.31) Senegal (-1.07) Congo Brazzaville (-1.08) Guinea (-1.10) 
Notes: Pop. grad. sh. <0: Share of cities with significant (10% threshold) negative population density gradient. Pop. grad. sh. ns: Share of cities with non-significant (10% threshold) population density gradient. Pop. grad. 
sh. >0: Share of cities with significant (10% threshold) positive population density gradient. Pop. grad. Av.: average (over all cities) population density gradient (when significantly (10% threshold) different from zero). 
Built-up grad. sh. <0: Share of cities with significant (10% threshold) negative built-up density gradient. Built-up grad. sh. ns: Share of cities with non-significant (10% threshold) built-up density gradient. Built-up grad. sh. 
>0: Share of cities with significant (10% threshold) positive built-up density gradient. Built-up grad. Av.: average (over all cities) built-up density gradient (when significantly (10% threshold) different from zero). Built-up 
grad. 

 
 
 
  



31 
 

Table A3: Highest and lowest values for city center characteristics 

 Largest 2nd Largest 3rd Largest 3rd Lowest 2nd Lowest Lowest 
# centers Namibia (3.98) Kenya (2.97) South Sudan (2.69) Mali (1.07) Côte d'Ivoire (1.07) Guinea-Bissau (1.05) 
Sh. 0 cen. Rwanda (0.11) Uganda (0.07) Malawi (0.06) Cameroon (0.00) Gabon (0.00) Cameroon (0.00) 
Sh. 1 cen. Guinea-Bissau (0.95) Mali (0.95) Liberia (0.95) South Sudan (0.63) Zimbabwe (0.63) Eswatini (0.63) 
Sh. 2 cen. Cabo Verde (0.20) Togo (0.18) Zambia (0.18) Liberia (0.04) Mali (0.03) Burundi (0.00) 
Sh. 3-5 cen. Zimbabwe (0.15) Ghana (0.13) Gambia, The (0.13) Congo Brazzaville (0.00) Guinea-Bissau (0.00) Guinea-Bissau (0.00) 
Sh. >6 cen. Zimbabwe (0.11) Eswatini (0.09) South Sudan (0.08) Liberia (0.00) Côte d'Ivoire (0.00) Guinea-Bissau (0.00) 
#cen. largest Kenya (499) Ethiopia (432) Niger (287) Central African R. (1) Cameroon (1) Chad (1) 
Sh. pop. lar. cen. Congo Brazzaville (0.81) Mali (0.81) Gabon (0.78) Cabo Verde (0.56) Eswatini (0.56) Zimbabwe (0.55) 
Sh. bui. lar. cen. Angola (0.67) Zambia (0.67) Congo Brazzaville (0.67) Niger (0.43) Cabo Verde (0.42) South Africa (0.37) 
Sh. area lar. cen. Lesotho (0.63) Rwanda (0.45) Eswatini (0.43) Central African R. (0.19) Namibia (0.18) South Sudan (0.18) 
lar/2nd pop. Togo (83.6) Senegal (55.9) Congo Brazzaville (38.2) Niger (3.4) Burundi (2.7) Sierra Leone (2.2) 
lar/2nd bui. Congo Brazzaville (62135.6) Cameroon (5006.4) South Sudan (3004.8) Liberia (11.1) Mauritius (8.6) Sierra Leone (5.3) 
lar/2nd area Togo (86.6) Cameroon (37.1) Angola (31.7) Niger (3.4) Burundi (2.5) Sierra Leone (2.4) 

Zipf centers Togo (-0.30) Congo Brazzaville (-0.33) Gabon (-0.37) Central African Republic 
(-0.80) Niger (-0.82) Sierra Leone (-0.83) 

Elas. #cen. pop. South Sudan (0.43) Chad (0.41) Benin (0.40) Cabo Verde (0.03) Liberia (0.01) Guinea-Bissau (0.00) 
Notes: #centers: Number of centers per city. Sh. 0 cen.: Share of cities without center. Sh. 1 cen.: Share of cities with one center. Sh. 2 cen.: Share of cities with two centers. Sh. 3-5 cen.: Share of cities with three to five 
centers. Sh. >6 cen.: Share of cities with 6 or more centers. #cen. largest: Number of centers of the largest city. Sh. pop. lar. cen.: City population share of the largest center. Sh. bui. lar. cen.: City built share of the largest 
center. Sh. area lar. cen.: City area share of the largest center. lar/2nd pop.: Relative population of the second over the largest center. lar/2nd bui.: Relative built-up area of the second over the largest center. lar/2nd area: 
Relative area of the second over the largest center. Zipf centers: Within city population Zipf's coefficient for city centers. Elas. #cen. pop.: elasticity of the number of centers in the city with respect to its population.  
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Table A4: OLS regression results - relationship between country size and within city concentration 
characteristics 

 
 (1) (2) (3) 

Dependent 
variable Pop. R2 Density Area R2 Density Area GDP 

per cap. R2 

Pop. grad. sh. <0 0.02 0.01 -0.03 0.02 0.12 -0.02 0.03 0.03 0.13 
Pop. grad. sh. ns -0.02 0.02 0.02 -0.02 0.10 0.01 -0.03 -0.03 0.12 
Pop. grad. sh. >0 0.00 0.00 0.01** -0.00 0.21 0.01** -0.00 -0.00 0.22 
Pop. grad. Av. 0.04 0.01 0.16** 0.02 0.13 0.16* 0.02 -0.02 0.14 
Pop. grad. P10 -0.24*** 0.17 0.02 -0.29*** 0.40 0.04 -0.27*** 0.09 0.40 
Pop. grad. P25 -0.21*** 0.16 0.04 -0.26*** 0.41 0.07 -0.24*** 0.12 0.43 
Pop. grad. P50 -0.16** 0.11 0.08 -0.20*** 0.40 0.10 -0.19*** 0.08 0.41 
Pop. grad. P75 -0.04 0.02 0.12* -0.07 0.24 0.13* -0.06 0.04 0.24 
Pop. grad. P90 -0.02 0.01 0.11** -0.04 0.25 0.12** -0.04 0.05 0.26 
Built grad. sh. <0 -0.01 0.00 0.01 -0.01 0.03 0.04 0.00 0.09** 0.14 
Built grad. sh. ns 0.01 0.00 -0.02 0.01 0.04 -0.04 -0.00 -0.09** 0.14 
Built grad. sh. >0 0.00 0.03 0.01** 0.00 0.11 0.00* 0.00 -0.00 0.13 
Built grad. Av. 0.01 0.00 0.10* -0.01 0.11 0.12* 0.01 0.09 0.15 
Built grad. P10 -0.00 0.00 0.14** -0.02 0.28 0.16*** -0.01 0.09 0.31 
Built grad. P25 -0.03 0.02 0.08* -0.05 0.29 0.09** -0.04 0.07 0.32 
Built grad. P50 -0.03 0.03 0.08** -0.05** 0.42 0.10*** -0.04 0.08** 0.48 
Built grad. P75 -0.03 0.04 0.06* -0.05** 0.37 0.07** -0.04* 0.05 0.40 
Built grad. P90 -0.01 0.00 0.06 -0.02 0.15 0.06 -0.02 0.03 0.15 
#centers 0.09 0.04 0.00 0.10 0.08 0.03 0.12 0.12 0.11 
Sh. 0 cen. 0.00 0.02 0.01 0.00 0.07 0.01 0.00 -0.01 0.09 
Sh. 1 cen. -0.01 0.01 -0.01 -0.01 0.02 -0.01 -0.01 -0.01 0.02 
Sh. 2 cen. -0.00 0.00 -0.00 -0.00 0.01 -0.00 0.00 0.01 0.05 
Sh. 3-5 cen. 0.00 0.01 0.01 0.00 0.06 0.01 0.00 -0.00 0.06 
Sh. >6 cen. 0.00 0.03 0.00 0.00 0.05 0.00 0.00 0.00 0.06 
#cen. largest 24.06* 0.08 14.42 25.60* 0.10 17.90 27.84** 14.64 0.11 
Sh. pop. lar. cen. -0.00 0.00 -0.03*** 0.01 0.40 -0.03*** 0.01 0.00 0.40 
Sh. bui. lar. cen. -0.00 0.00 -0.00 0.00 0.00 -0.00 -0.00 -0.01 0.01 
Sh. area lar. cen. -0.02 0.06 0.02 -0.02** 0.34 0.02 -0.02** 0.00 0.34 
lar/2nd pop. -0.57 0.00 -0.25 -0.63 0.00 0.74 0.01 4.16 0.05 
lar/2nd bui. -821.53 0.01 -1910.43 -647.81 0.04 -1597.73 -446.16 1317.72 0.05 
lar/2nd area -0.38 0.00 0.27 -0.49 0.01 0.89 -0.08 2.62 0.03 
Zipf centers -0.01 0.02 -0.00 -0.01 0.03 0.01 -0.00 0.06** 0.17 
Elas. #cen. pop. 0.04*** 0.24 0.02 0.05*** 0.29 0.02 0.05*** 0.00 0.29 
Notes:  Estimation results for equations [1] – [3] for different within city concentration measures (listed in the notes of Tables 1 and 3). All 
regressions based on 43 SSA countries, Comoros, Madagascar, Seychelles and São Tomé Príncipe being excluded for the within-city statistics 
given their to low number of cities or of centers in these cities. 

 




