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Difference-in-Differences Estimators with Continuous
Treatments and no Stayers

Clément de Chaisemartin, Xavier D’Haultfœuille and Gonzalo Vazquez-Bare∗

1 Set-up, assumptions and parameter of interest

A representative unit is drawn from an infinite super population, and observed at two time
periods. All expectations below are taken with respect to the distribution of variables in
the super population. We are interested in the effect of a continuous and scalar treatment
variable on that unit’s outcome. Let Dt denote the unit’s treatment at period t ∈ {1, 2} and
let Dt denote its support; let also D denote the support of (D1, D2). For any (d1, d2) ∈ D,
let Yt(d1, d2) denote the unit’s potential outcome at t with treatment d, and let Yt denote
their observed outcomes: Yt = Yt(D1, D2). Finally, for any random variables (Xt)t=1,2, let
∆X = X2 −X1. We impose the following assumptions:

Assumption 1 (Static model) For all t ∈ {1, 2} and (d1, d2) ∈ D, Yt(d1, d2) only depends
on dt; we denote it by Yt(dt).

Assumption 2 (Parallel trends) ∀d ∈ D1, E(∆Y (d)|D1 = d,D2) = E(∆Y (d)|D1 = d).

Assumption 3 (Bounded treatment, bounded-lipschitz potential outcomes)

1. D1 and D2 are bounded subsets of R.
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2. ∃Y ≥ 0: sup(d1,d2)∈D E[Y |D1 = d1, D2 = d2] < ∞, and ∀(t, d, d′) ∈ {1, 2} × D2
t ,

|Yt(d) − Yt(d′)| ≤ Y |d− d′|.

Assumptions 2-3 are also imposed by de Chaisemartin et al. (2023), and are discussed therein.

Assumption 4 (No stayers but quasi-stayers) P (∆D = 0) = 0, P (|∆D| ≤ η) > 0 ∀η > 0.

First, Assumption 4 states that there are no “stayers”, namely units for which D1 = D2.
This is in contrast with de Chaisemartin et al. (2023), who assume throughout that there
are stayers. Second, Assumption 4 states that there are “quasi-stayers”, namely units whose
treatment change may be infinitesimally small. This assumption is realistic when the treat-
ment is, say, temperatures: some counties may have very similar temperatures from one year
to the next, though no county has exactly the same temperatures.

Hereafter, we focus on the following effect:

θ0 =E
(

|∆D|
E(|∆D|

× Y2(D2) − Y2(D1)
D2 −D1

)
(1)

=E (sgn(∆D)(Y2(D2) − Y2(D1)))
E(|∆D|) .

θ0 is a weighted average of the slopes of units’ potential-outcome functions, from their period-
one to their period-two treatment, the so-called WAOSS in de Chaisemartin et al. (2023).
It follows from the mean-value theorem that it may be seen as a weighted average marginal
effect.

2 Nonparametric identification and estimation

Theorem 1 If Assumptions 1-4 hold,

θ0 = [E (S∆Y ) − ζ0]/E[|∆D|],

with S := sgn(∆D) and

ζ0 := E
[
S lim

η↓0
E(∆Y |D1, |D2 −D1| ≤ η)

]
.

Theorem 1 shows that without stayers, θ0 is identified by the limit (as η ↓ 0) of a difference-
in-difference comparing the ∆Y of all units and of quasi-stayers.
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We now discuss estimation of θ0. Only the estimation of ζ0 raises difficulties. We show in the
proof of Theorem 1 that under our assumptions, g(d1, δ) := E[∆Y |D1 = d1,∆D = δ] is well-
defined and continuous at (d1, 0), for any d1 ∈ D1. Hence, ζ0 satisfies ζ0 = E [Sg(D1, 0)]. This
formulation links our problem to the estimation of nonparametric additive models. To see
this, suppose that the variables (W,X) ∈ R×Rk satisfy h(x) := E[W |X = x] = ∑k

j=1 hj(xj)
for some unknown functions (hj)j=1,...,k. Then, under the normalization E[hj(Xj)] = 0 for
j < k, we can identify and estimate hk by remarking that

hk(xk) = E[h(X1, ..., Xk−1, xk)]. (2)

We can then estimate hk(xk) by first estimating h with any usual nonparametric estimator,
and second plugging it in the sample counterpart of the expectation in (2). As Linton
and Nielsen (1995) and Kong, Linton and Xia (2010) show, the corresponding estimator is,
under regularity conditions, asymptotically normal and converges at the standard univariate
nonparametric rate (namely, n2/5, with n the sample size). This rate is also the optimal
convergence rate for this problem (Stone, 1985). Up to minor changes (in ζ0, g plays the
role of h in (2) and ζ0 also includes S), our parameter ζ0 can be obtained in the same way
as hk(xk), so we can also obtain an asymptotically normal estimator converging at the n2/5

rate.

This contrasts with the standard (n1/2) rate obtained for the estimators of the WAOSS in
the presence of stayers, as shown by de Chaisemartin et al. (2023). To understand the
difference, note that with stayers, the proportion of units used as controls to reconstruct
switchers’ counterfactual outcome evolution remains positive as n → ∞. On the other hand,
it tends to zero here, since we need to consider quasi-stayers, with η → 0 as n → ∞ to avoid
any bias. This results in a lower rate of convergence.

Finally, in applications with no stayers, it is more difficult to propose placebo estimators
of the parallel trends assumption. When a third period of data, period zero, is available,
a placebo mimics the actual estimator, replacing ∆Y by units’ period-zero-to-one outcome
evolution. However, as units’ treatments may have changed from period zero to one, one
would need to restrict the sample to period-zero-to-one quasi-stayers, to avoid that the
placebo differs from zero due to the treatment’s effect. Thus, the placebo would compare
the period-zero-to-one outcome evolution of period-one-to-two switchers and quasi-stayers,
restricting the sample to period-zero-to-one quasi-stayers. Then, we conjecture that the
number of units used as controls by the placebo may tend to zero faster than the number of
units used as controls by the actual estimator, for instance if being a period-zero-to-one and
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a period-one-to-two quasi-stayer are independent events. Then, the placebo may converge
at an even slower rate than the actual estimator.

3 A parametric approach

We now consider a parametric root-n consistent estimator, that avoids issues related to
nonparametric estimation and inference, while still allowing for heterogeneous and nonlinear
effects. Specifically, we impose that g(d1, δ) = gλ0(d1, δ), where the family (gλ)λ∈Rp is known
(but λ0 is not). By definition of g and Assumption 2,

g(d1, δ) = E[Y2(d1) − Y1(d1)|D1 = d1] + δE

[
Y2(d1 + δ) − Y2(d1)

δ

∣∣∣D1 = d1,∆D = δ

]
.

Thus, the parametric assumption amounts to imposing restrictions on both d1 7→ E[Y2(d1)−
Y1(d1)|D1 = d1] and the average slope (d1, δ) 7→ E[(Y2(d1 +δ)−Y2(d1))/ δ|D1 = d1,∆D = δ].
For instance, if gλ(d1, δ) is linear, we assume that the former function is linear, and the latter
is constant. Similarly, g is a polynomial if both functions are polynomial. Note that we can
test that E[∆Y |D1 = d1,∆D = δ] = gλ0(d1, δ) for some λ0 by a parametric specification
test, see e.g. Bierens (1982) or Hong and White (1995).

We consider a simple two-step estimator based on this parametric restriction and an i.i.d.
sample (D1i,∆Di,∆Yi)i=1,...,n. In the first step, we estimate λ0 by (linear or nonlinear) least
squares or, more generally, a GMM estimator λ̂. In the second step, we estimate θ0 by

θ̂ =
∑n

i=1 Si(∆Yi − g
λ̂
(D1i, 0))∑n

i=1 |∆Di|
.

Since θ̂ may be seen as a two-step GMM estimator, we obtain, under Assumptions 1-4 and
standard regularity conditions on λ 7→ gλ(d1, δ),

√
n
(
θ̂ − θ0

)
d−→ N (0, V (ψ)) ,

where the influence function ψ satisfies

ψ = 1
E[|∆D|]

[
S (∆Y − gλ0(D1, 0)) − E

[
S
∂g

∂λ
(D1, 0)|λ=λ0

]
× ξ − θ0|∆D|

]
,

with ξ the influence function of λ̂. We can thus simply estimate V (ψ) by a plug-in estimator,
using an initial estimator of ξ.
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4 Application

We use the data from Deschênes and Greenstone (2012) to compute our parametric estimator.
The authors use a balanced panel of 2,342 US counties in years 1987, 1992, 1997, and 2002,
and consider TWFE regressions, weighted by counties’ farmland acres, of annual agricultural
profits in county c and year t on four treatment variables: growing season degree days,
growing season degree days squared, precipitations, and precipitations squared. To fit in
the two-periods-one-treatment case we consider, we restrict the data to years 1997 and
2002, and we focus on the growing season degree days treatment. The coefficient of that
treatment in a TWFE regression estimated on years 1997 and 2002 and weighted by counties’
farmland acres is equal to -0.024 (s.e. clustered at the county level: 0.007), which is close to
the corresponding TWFE coefficient keeping the four years and all treatments (-0.015, s.e.
clustered at the county level: 0.005). Assuming that

E[Y2(d1) − Y1(d1)|D1 = d1] = λ0,1 + λ0,2d1

and

E

[
Y2(d1 + δ) − Y2(d1)

δ

∣∣∣∣∣D1 = d1,∆D = δ

]
= λ0,3 + λ0,4d1 + λ0,5δ,

we find that θ̂, weighted by counties’ farmland acres as well, is equal to −0.018 (s.e.: 0.011)
Thus, the conclusion from the TWFE regression seems robust to allowing for some effect
heterogeneity, even though the estimated effect is less significant. While arguably restrictive,
our model for the conditional expectation function of slopes allows for some non-linearity
and heterogeneity in the effects of temperatures on agricultural output.

Appendix: proof of theorem 1

It suffices to show that a.s.,

lim
η↓0

E (∆Y |D1, |∆D| ≤ η) = E (Y2(D1) − Y1(D1)|D1, D2) . (3)

Fix η > 0. By Assumption 4, P (|∆D| ≤ η|D1) > 0. Thus, E (∆Y |D1, |∆D| ≤ η) is well-
defined. Moreover,

E (∆Y |D1, |∆D| ≤ η) =E (Y2(D2) − Y2(D1)|D1, |∆D| ≤ η)

+ E (Y2(D1) − Y1(D1)|D1, |∆D| ≤ η) . (4)
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Now, by Jensen’s inequality and Point 2 of Assumption 3,∣∣∣E [Y2(D2) − Y2(D1)|D1, |∆D| ≤ η]
∣∣∣ ≤E (|Y2(D2) − Y2(D1)| |D1, |∆D| ≤ η)

≤E
(
Y |D2 −D1| |D1, |∆D| ≤ η

)
≤ηE

[
sup

(d1,d2)∈D
E
(
Y |D1 = d1, D2 = d2

)
|D1, |∆D| ≤ η

]

≤Kη (5)

for some K < ∞. Next, by Assumption 2,

E (Y2(D1) − Y1(D1)|D1, |∆D| ≤ η) =E (Y2(D1) − Y1(D1)|D1)

=E (Y2(D1) − Y1(D1)|D1, D2) .

Combined with (4)-(5), this yields (3) □
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