From Knothe’s transport to Brenier’s map and a continuation method for optimal transport - Sciences Po Access content directly
Journal Articles SIAM Journal on Mathematical Analysis Year : 2008

From Knothe’s transport to Brenier’s map and a continuation method for optimal transport

Abstract

A simple procedure to map two probability measures in ℝd is the so-called \emph{Knothe-Rosenblatt rearrangement}, which consists in rearranging monotonically the marginal distributions of the last coordinate, and then the conditional distributions, iteratively. We show that this mapping is the limit of solutions to a class of Monge-Kantorovich mass transportation problems with quadratic costs, with the weights of the coordinates asymptotically dominating one another. This enables us to design a continuation method for numerically solving the optimal transport problem.
Fichier principal
Vignette du fichier
knothe-s-trasnport.pdf (321.84 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03473711 , version 1 (09-12-2021)

Identifiers

Cite

Guillaume Carlier, Alfred Galichon, Filippo Santambrogio. From Knothe’s transport to Brenier’s map and a continuation method for optimal transport. SIAM Journal on Mathematical Analysis, 2008, 41 (6), pp.2554 - 2576. ⟨hal-03473711⟩
45 View
8 Download

Share

Gmail Facebook Twitter LinkedIn More