Strategic Information Disclosure to Classification Algorithms: An Experiment - Sciences Po
Pré-Publication, Document De Travail (Working Paper) Année : 2024

Strategic Information Disclosure to Classification Algorithms: An Experiment

Résumé

We experimentally study how individuals strategically disclose multidimensional information to a Naive Bayes algorithm trained to guess their characteristics. Subjects' objective is to minimize the algorithm's accuracy in guessing a target characteristic.

We vary what participants know about the algorithm's functioning and how obvious are the correlations between the target and other characteristics. Optimal disclosure strategies rely on subjects identifying whether the combination of their characteristics is common or not. Information about the algorithm functioning makes subjects identify correlations they otherwise do not see but also overthink. Overall, this information decreases the frequency of optimal disclosure strategies.

Fichier principal
Vignette du fichier
2024_j_hagenbach_and_a_salas_strategic_information_disclosure_to_classification_algorithms_an_experiment.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04823243 , version 1 (06-12-2024)

Licence

Identifiants

  • HAL Id : hal-04823243 , version 1

Citer

Jeanne Hagenbach, Aurélien Salas. Strategic Information Disclosure to Classification Algorithms: An Experiment. 2024. ⟨hal-04823243⟩
0 Consultations
0 Téléchargements

Partager

More